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Note on Convolution of Gaussians

This note records some properties of models of Gaussian data with a mean that includes
an additive bias that is constrained by a Gaussian control measurement.

1 Maximum Likelihood (ML) method

Consider a measurement that consists of two independent quantities: the primary measure-
ment y and a control measurement u. They are both modeled with Gaussian pdfs,

p(y|µ, θ) =
1√

2πσy
e−(y−µ−θ)2/2σ2

y , (1)

p(u|θ) =
1√

2πσu
e−(u−θ)2/2σ2

u . (2)

with means E[y] = µ+θ, E[u] = θ, and variances σ2y and σ2u as shown. Here µ is the parameter
of interest and θ is a nuisance parameter that represents an additive bias. Suppose that σy
and σu are known.

The likelihood function is the product of the two Gaussian terms,

L(µ, θ) = p(y, u|µ, θ) = p(y|µ, θ)p(u|θ) , (3)

which gives the log-likelihood (up to an additive constant) of

lnL(µ, θ) = −1

2

[
(y − µ− θ)2

σ2y
+

(u− θ)2

σ2u

]
. (4)

Setting the derivatives of lnL with respect to µ and θ gives the maximimum-likelihood
estimators (MLEs)

µ̂ = y − u , (5)

θ̂ = u . (6)

Since the variances V [y] = σ2y and V [u] = σ2u are taken as known, the variance of µ̂ is

V [µ̂] = V [y − u] = V [y] + (−1)2V [u] = σ2y + σ2u , (7)

or equivalently we can write the standard deviation of µ̂ as σµ̂ =
√
σ2y + σ2u. We refer to this

as the ML result: the two “error” sources σy and σu add in quadrature.
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2 Marginal likelihood method

As an alternative to the ML procedure of Sec. 1, we can treat the nuisance parameter θ in
a Bayesian sense and assign to it a prior pdf π(θ). Suppose we take the original prior (the
“ur-prior”), before the control measurement, to be a constant,

π0(θ) = const. (8)

Then given the Gaussian distributed measurement u, the knowledge about θ is updated by
Bayes’ theorem to become

π(θ) ∝ p(u|θ)π0(θ) . (9)

Using a Gaussian distribution for u and normalizing as a pdf for θ gives again a Gaussian,

π(θ) =
1√

2πσu
e−(θ−u)2/σ2

u =
1√

2πσθ
e−θ

2/σ2
θ (10)

Here in the fianl equality we substituted u = 0, i.e. the the best estimate for the bias is zero,
otherwise the measurement y would be corrected to account for it. In addition the standard
deviation σu was relabled σθ as this quantity now reflects the (Bayesian) uncertainty in θ.

Next, the prior of Eq. (10) can be used with the Gaussian distributed y to find the
marginal likelihood

Lm(µ) = p(y|µ) =

∫
p(y|µ, θ)π(θ) dθ

=

∫
1√

2πσy
e−(y−µ−θ)2/2σ2

y
1√

2πσu
e−θ

2/σ2
u dθ . (11)

The integral in Eq. (11) can be carried out by combining the arguments of the exponential
terms and completing the square. One obtains

Lm(µ) =
1√

2π(σ2y + σ2u)
exp

[
−1

2

(y − µ)2

σ2y + σ2θ

]
. (12)

The marginal model defined by Eq. (12) corresponds to an average of those defined by
the p(y|µ, θ) in Eq. (1) with the average taken with respect to the prior π(θ) from Eq. (10).
The ML estimator from the marginal model and its variance are found as before to be

µ̂m = y , (13)

V [µ̂m] = σ2y + σ2θ . (14)

As in the original ML case one sees that the effect of the uncertan nuisance parameter θ is
to increase the variance by σ2y → σ2y + σ2θ .
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