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Note on Convolution of Gaussians

This note records some properties of models of Gaussian data with a mean that includes
an additive bias that is constrained by a Gaussian control measurement.

1 Maximum Likelihood (ML) method

Consider a measurement that consists of two independent quantities: the primary measure-
ment y and a control measurement u. They are both modeled with Gaussian pdfs,
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with means Ey] = u+60, E[u] = 0, and variances O'; and o2 as shown. Here y is the parameter

of interest and 0 is a nuisance parameter that represents an additive bias. Suppose that o,
and o, are known.

The likelihood function is the product of the two Gaussian terms,

L(p1,0) = p(y, ulp, 0) = p(y|p, 0)p(uld) , (3)

which gives the log-likelihood (up to an additive constant) of
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Setting the derivatives of In L with respect to p and 6 gives the maximimum-likelihood
estimators (MLEs)
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Since the variances Vy] = o7 and V[u] = 0. are taken as known, the variance of fi is

Vi = Vly —u] = VIyl + (-1)*V[u] = o + 03, (7)

or equivalently we can write the standard deviation of i as o = | /Jg + o2. We refer to this
as the ML result: the two “error” sources o, and o, add in quadrature.



2 Marginal likelihood method

As an alternative to the ML procedure of Sec. 1, we can treat the nuisance parameter 6 in
a Bayesian sense and assign to it a prior pdf 7(6). Suppose we take the original prior (the
“ur-prior”), before the control measurement, to be a constant,

mo(0) = const. (8)

Then given the Gaussian distributed measurement u, the knowledge about 6 is updated by
Bayes’ theorem to become

m(0) o p(ul0)mo(0) - (9)

Using a Gaussian distribution for v and normalizing as a pdf for 8 gives again a Gaussian,
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Here in the fianl equality we substituted u = 0, i.e. the the best estimate for the bias is zero,
otherwise the measurement y would be corrected to account for it. In addition the standard
deviation o, was relabled oy as this quantity now reflects the (Bayesian) uncertainty in 6.
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Next, the prior of Eq. (10) can be used with the Gaussian distributed y to find the
marginal likelihood
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The integral in Eq. (11) can be carried out by combining the arguments of the exponential
terms and completing the square. One obtains
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The marginal model defined by Eq. (12) corresponds to an average of those defined by
the p(y|p,0) in Eq. (1) with the average taken with respect to the prior m(#) from Eq. (10).
The ML estimator from the marginal model and its variance are found as before to be

fim = Y, (13)

Vipm] = O'Z +03. (14)

As in the original ML case one sees that the effect of the uncertan nuisance parameter 6 is
to increase the variance by 03 — ag + 03 .



