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Comment on different likelihood ratios

A recent presentation at the ATLAS Statistics Forum [1] compared the test statistic used
for exclusion in the CSC Higgs combination [2] with a modified statistic that provides an
equivalently powerful test but allows one to compute accurate p-values more easily. The
difference between the two statistics is that in the CSC version, the estimated number of
signal events was effectively constrained to be positive, but in the modified version this
constraint is not applied. In this note both test statistics are examined for a simple special
case where the data consist of a single Gaussian distributed value.

The conclusions of this note agree with those of [1] on the question of using the modified
statistic. Furthermore it is shown that both statistics are equivalent to using the likelihood
ratio as defined in the LEP analyses, also in agreement with Ref. [1]. A second suggestion
made in [1] was to use the CLs method for exclusion limits; this question is not addressed
here.

Note that the issues here have nothing to do with how one treats nuisance parameters.
In fact, in the example here there are none. The concept of the profile likelihood relates to
how one treats nuisance parameters, and therefore here the method used in the CSC Higgs
combination is not referred to here as the “profile-likelihood” method. One could envisage
applying the modification proposed here regardless of how one chooses to treat nuisance
parameters.

1 Basic formalism and CSC-style likelihood ratio

Suppose the outcome of a measurement is a continuous variable x modeled as following a
Gaussian distribution, with expectation value and variance given by

E[x] = µs + b , (1)

V [x] = σ2 . (2)

Here s and b are specified constants denoting the contributions from signal and background,
respectively. The standard deviation σ is also taken here as a known constant, and µ is a
strength parameter. One wishes to make inferences about µ based on a single observed value
of x. The likelihood function is

L(µ) =
1√
2πσ

exp

[

−1

2

(x − (µs + b))2

σ2

]

. (3)

To test a value of µ, one constructs the likelihood ratio

λ(µ) =
L(µ)

L(µ̂)
, (4)
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where µ̂ is the Maximum Likelihood (ML) estimator.

Suppose now that on physical grounds, µ should be positive. The maximum value of the
likelihood from within the allowed parameter space for µ is therefore found from

µ̂ =

{ x−b
s

x ≥ b,

0 otherwise.
(5)

Rather than using the likelihood ratio directly, one usually uses the equivalent logarithmic
variable −2 lnλ(µ). This is

−2 lnλ(µ) =







(x−(µs+b))2

σ2 x ≥ b ,

(x−(µs+b))2

σ2 − (x−b)2

σ2 otherwise.
(6)

For an upper limit on µ one defines the test statistic

qµ =

{−2 ln λ(µ) µ̂ ≤ µ ,

0 otherwise.
(7)

Putting together Eqs. (5), (6) and (7) gives

qµ =



















(x−(µs+b))2

σ2 − (x−b)2

σ2 x ≤ b ,

(x−(µs+b))2

σ2 b < x ≤ µs + b ,

0 otherwise.

(8)

The p-value of a hypothesized value of µ is

pµ =

∫

∞

qµ,obs

f(qµ|µ) dqµ , (9)

where f(qµ|µ) is the pdf of qµ under the assumption of µ. If x is Gaussian distributed with
mean µs + b and standard deviation σ, the quantity

(x − (µs + b))2

σ2
(10)

follows a chi-square distribution for one degree of freedom. From Eq. (8) it is clear that the
pdf of qµ does not, however, have this simple form but rather is more complicated.

2 Likelihood ratio without constraint on µ̂

According to the procedure proposed in Ref. [1], one defines an unphysical estimator µ̂ ′ which
is allowed to be negative even if x < b, i.e.,

µ̂′ =
x − b

s
. (11)

This is used instead of µ̂ in the likelihood ratio (4). Defining a test statistic q ′

µ in the same
manner as above, one finds
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q′µ =







(x−(µs+b))2

σ2 x ≤ µs + b ,

0 otherwise.
(12)

Both test statistics, qµ and q′µ are shown as a function of x in Fig. 1.
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Figure 1: The statistics qµ and
q′

µ versus x (here s = 10, b = 20,
σ2 = 20).

From the form of (12) one can see that its pdf under the assumption of the strength
parameter µ is a half-chi-square distribution. That is, if x > 0, which occurs half the time,
one has q′µ = 0. The other half of the time when x ≤ µs + b, q ′µ follows a chi-square pdf for
one degree of freedom. Therefore one recovers the simple result for the significance (see [2]),

Z =
√

q′µ =







µs+b−x
σ

x ≤ µs + b ,

0 otherwise.
(13)

A crucial point is now that qµ and q′µ are connected by a monotonic relation, as can be
seen in Fig. 2. This means that they are equivalent test statistics. If one were to determine,
e.g., using Monte Carlo, the exact sampling pdf f(qµ|µ) and determine from it the significance
Z for a given observed x, then it would by construction agree with the value found from the
simple formula (13).

Therefore there is a clear advantage from using the modified statistic q ′

µ. It allows for a more
accurate determination of the p-value, and hence significance, since one can exploit the chi-
square properties of its pdf. The study in Ref. [1] applied this to the more realistic example
of a Higgs search with Poisson distributed data and found essentially the same result.

3 LEP-style likelihood ratio

As a further step one can also show that the likelihood ratio (4) is in this example equivalent
to the test statistic used at LEP and the Tevatron. There one effectively tests a value of µ
using
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Figure 2: The statistic q′

µ versus
qµ. Different points on the curve
correspond to different values of x.

qµ0 = −2 ln
L(µ)

L(0)

=
(x − (µs + b))2

σ2
− (x − b)2

σ2

=
−2µsx + (µs + b)2 − b2

σ2
. (14)

From the last line in (14) one sees that this statistic is a linear function of x and therefore
itself must follow a Gaussian distribution. Its expectation value and variance assuming a
strength parameter µ are

E[qµ0|µ] =
−2µs(µs + b) + (µs + b)2 − b2

σ2
= −(µs)2

σ2

V [qµ0|µ] =
4µ2s2

σ4
V [x] =

4µ2s2

σ2
, (15)

and therefore the standardized variable

y =
qµ0 − E[qµ0|µ]

√

V [qµ0|µ]
=

µs + b − x

σ
(16)

will follow a Gaussian with mean of zero and unit variance. The p-value of a hypothesized
value of µ is therefore

pµ =

∫

∞

qµ0,obs
f(qµ0|µ) dqµ = 1 − Φ(y) , (17)

and the corresponding significance is

Z = Φ−1(1 − p) = Φ−1(Φ(y)) =
µs + b − x

σ
. (18)
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This is therefore equivalent to the significance found using q ′µ above.

According to the Neyman-Pearson lemma, the statistic qµ0 will give the most powerful
test, and in other more complicated examples one could expect that the statistic L(µ)/L(µ̂)
is not quite as powerful.

4 Median significance

In addition to finding the significance from a given observation of x, one can ask for the
median significance with which one can reject a certain strength µ assuming data distributed
according to a different strength µ′. For exclusion limits this means finding the median,
assuming µ = 0 of the significance with which one can reject µ.

In the example presented above, the significance Z from Eq. (13) is a linear function of
x, which is itself Gaussian distributed with mean µs + b. Therefore the median signifance is
given by

med[Z|µ′] =
µs + b − (µ′s + b)

σ
=

(µ − µ′)s

σ
. (19)

In this case the Asimov data value xA = µ′s + b clearly gives the same result, since this is
equal to the median value of x.
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