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Parameter Estimation with Constraints

This note summarizes the discussions between GDC and Olaf Behnke on parameter esti-
mation with constraints. It provides details and derivations of the material that appears in
condensed form in Sec. 40.2.4 of the PDG Review of Particle Properties [1].

In some applications one is interested in using a set of measured quantities y = (y1, . . . , yN )
to estimate a set of parameters θ = (θ1, . . . , θM ) subject to a number of constraints. For ex-
ample, one may have measured coordinates from two tracks, and one wishes to estimate their
momentum vectors subject to the constraint that the tracks have a common vertex. The pa-
rameters can also include momenta of undetected particles such as neutrinos, as long as the
constraints from conservation of energy and momentum and from known masses of particles
involved in the reaction chain provide enough information for these quantities to be inferred.

A set of K constraints can be given in the form of equations

ck(θ) = 0 , k = 1, . . . ,K . (1)

In some problems it may be possible to define a new set of parameters η = (η1, . . . , ηL) with
L = M −K such that every point in η-space automatically satisfies the constraints. If this
is possible then the problem reduces to one of estimating η with, e.g., maximum likelihood
or least squares and then transforming the estimators back into θ-space.

In many cases it may be difficult or impossible to find an appropriate transformation
η(θ). Suppose that the parameters are determined through minimizing an objective function
such as χ2(θ) in the method of least squares. Here one may enforce the constraints by finding
the stationary points of the Lagrange function

L(θ,λ,y) = χ2(θ,y) +
K∑
k=1

λkck(θ) (2)

with respect to both the parameters θ and a set of Lagrange multipliers λ = (λ1, . . . , λK).
Combining the parameters and Lagrange multipliers into an (M + K)-component vector
γ = (θ1, . . . , θM , λ1, . . . , λK), the solutions for γ, i.e., the estimators γ̂, are found (e.g.,
numerically) from the system of equations

Fi(γ,y) ≡
∂L
∂γi

= 0 , i = 1, . . . ,M +K . (3)

To obtain the covariance matrix of the estimated parameters one can find solutions γ̃
corresponding to the expectation values of the data ⟨y⟩ and expand Fi(γ̂,y) to first order
about these values. This gives (see, e.g., Sec. 11.6 of Ref. [2]) linearized approximations for
the estimators, γ̂(y) ≈ γ̃ + C(y − ⟨y⟩), where the matrix C = −A−1B, and A and B are
given by

Aij =

[
∂Fi

∂γj

]
γ̃,⟨y⟩

and Bij =

[
∂Fi

∂yj

]
γ̃,⟨y⟩

. (4)
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In practice the values ⟨y⟩ and corresponding solutions γ̃ are estimated using the data from the
actual measurement. Using this approximation for γ̂(y), one can find the covariance matrix
Uij = cov[γ̂i, γ̂j ] of the the estimators for the γi in terms of that of the data Vij = cov[yi, yj ]
using error propagation ,

U = CV CT . (5)

The upper-left M ×M block of the matrix U gives the covariance matrix for the estimated
parameters cov[θ̂i, θ̂j ]. If the parameters are estimated using the method of least squares,
then the number of degrees of freedom for the distribution of the minimized χ2 is increased
by the number of constraints, i.e., it becomes N −M +K. Further details can be found in,
e.g., Ch. 7 of Ref. [3].
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Appendix A: Derivation of covariance matrix

Starting from the equations Fi(γ,y) = 0, i = 1, . . . ,K + M , consider two solutions: γ̂
corresponding to data y and γ̃ corresponding to ⟨y⟩. Expanding Fi(γ̂,y) to first order in γ̂
and y about γ̃ and ⟨y⟩ gives

Fi(y, γ̂) ≈ Fi(⟨y⟩, γ̃) +
M+K∑
j=1

[
∂Fi

∂γj

]
⟨y⟩,γ̃

(γ̂j − γ̃j) +
N∑
j=1

[
∂Fi

∂yj

]
⟨y⟩,γ̃

(yj − ⟨yj⟩) . (6)

The terms Fi(y, γ̂) and Fi(⟨y⟩, γ̃) are both zero because both pairs of arguments are assumed
to be solutions to Fi = 0. Dropping these terms, the equation can be rewritten in matrix
form γ̂ ≈ γ̃ + C(y − ⟨y⟩), where C = −A−1B and the definitions of the matrices A and B
are as given in Eq. (4).

Appendix B: Comments on notation

In the notation used above in the example of a kinematic fit, the parameters θ are meant to
include all of the quantities to be estimated, including true momenta of particles for which

2



there are measured values as well as those like neutrinos that are not measured. The vector
y represents all of the measured quantities, and the χ2 term would usually have the form

χ2(θ,y) = (y − µ(θ))TV −1(y − µ(θ)) . (7)

Here µ means the expectation values of the measurements, i.e.,

E[yi] = µi(θ) . (8)

This covers the case where a component of θ includes a parameter for which there is no
direct measurement, such as a neutrino momentum. The various µi would then not depend
directly on such a parameter, but because of the constraint terms ck(θ), one nevertheless
obtains estimators for them. That is, if θj is something like a neutrino momentum, then
∂χ2/∂θj = 0, but because this θj enters into the ck terms, the Lagrange function depends on
θj , allowing one to estimate it.

Appendix C: Comparison to Blobel and Lohrmann

A similar treatment of constrained fits is given in the German-language monograph of Blobel
and Lohrmann [4], Ch. 7. In their notation, from Eq. (7.114) the covariance matrix of the
estimated parameters corresponds to C22 , which by Eq. (7.112) is

C22 = W−1
A . (9)

Then according to Eq. (7.111) we have WA = (ATWBA), and therefore

C22 = (ATWBA)−1

= A−1W−1
B (AT )−1

= A−1W−1
B (A−1)T , (10)

where the last line follows from (AT )−1 = (A−1)T . Then using Eq. (7.110),WB = (BW−1BT )−1,
we have

C22 = A−1BW−1BT (A−1)T

= A−1BV (A−1B)T , (11)

where V = W−1 is the covariance matrix of the measurements, Vij = cov[yi, yj ]. Then in
GDC’s notation we have U = C22 and C = −A−1B, and therefore

U = CV CT , (12)

which confirms the desired result.
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Appendix D: Simplified formula for covariance matrix

In 2017 it was pointed out by Olaf Behnke that Eq. (5) for the covariance matrix U of the
constrained estimators can, with some restrictions, be expressed in a simpler form, namely,
U is the upper-left M × M submatrix of 2A−1, where the (M + K) × (M + K) matrix A
is defined by the first of Eqs. (4). This follows from Eq. (7.99) in the book by Blobel and
Lohrmann [4]. Below a rederivation along these lines is given using the notation of this note.

First, suppose that the measurements y = (y1, . . . , yN )T have expectation values that can
be expressed in terms of the parameters θ = (θ1, . . . , θM )T as a linear relation,

E[y] = Rθ . (13)

Here y and θ are column vectors and R is an N ×M matrix.

In addition, suppose that the constraints are given by linear functions of the parameters.
That is, the functions ck(θ) with k = 1, . . . ,K can be expressed as a first-order Taylor series
about an arbitrary fixed point θ̃ as

ck(θ) = ck(θ̃) +
M∑
i=1

∂ck
∂θi

(θi − θ̃i) , (14)

and that the derivatives

∂ck
∂θi

≡ aki (15)

are constants (independent of θ), which we will write using the K × M matrix a. The
constraint functions can thus be written as the vector equation

c(θ) = c(θ̃) + a(θ − θ̃) . (16)

The derivation below requires both a linear least-squares problem (expectation values of
measurements linear in the parameters) and linear constraints. If these restrictions are not
met then the final result for the covariance matrix is at best an approximation.

The solution to the unconstrained problem is found by minimizing

χ2(θ) = (y −Rθ)TV −1(y −Rθ) . (17)

The resulting estimators will be denoted with primes and are found to be

θ′ = (RTV −1R)−1RTV −1y = W−1RTV −1y , (18)

where W = RTV −1R can also be related to the second derivative of χ2 as

Wij =
1

2

∂2χ2

∂θi∂θj

∣∣∣∣∣
θ′

. (19)

One finds that the covariance matrix of the unconstrained estimators U ′
ij = cov[θ′i, θ

′
j ] is given

by U ′ = W−1.
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To find the least-squares estimators subject to the constraints c(θ) = 0, we seek, as before,
the minimum of the Lagrange function

L(θ,λ) = χ2(θ) +
K∑
k=1

λkck(θ) (20)

with respect to θ as well as the Lagrange multipliers λ. Defining as above the (M + K)-
component column vector γ = (θ,λ), the solutions can be found from

F(γ) = ∇γL = 0 , (21)

where F = (F1, . . . , FM+K)T is column vector of M + K functions and the operator ∇γ

denotes the vector of derivatives with respect to the components of γ.

The estimators γ̂ = (θ̂, λ̂) satisfy F(γ̂) = 0. To find the solutions we expand F about
γ ′ = (θ′,λ′), where θ′ is the solution to the unconstrained problem found above and λ′ is an
arbitrary set of values for the Lagrange multipliers, which in the final result cancel out. This
gives

F(γ̂) = F(γ ′) +A(γ̂ − γ ′) , (22)

where the matrix A is defined as

Aij =
∂Fi

∂γj

∣∣∣∣∣
γ′

. (23)

The matrix A differs from that defined in Eq. (4) only in that the derivatives are evaluated at
the unconstrained estimators rather than at the (mean) solutions to the constrained problem.

The components of F are

Fi(γ) =


∂χ2

∂θi
+
∑K

k=1
∂ck(θ)
∂θi

λk i = 1, . . . ,M ,

ci−M (θ) i = M + 1, . . . ,M +K.
(24)

Evaluating these at γ ′ gives

F(γ ′) =

 aTλ′

c(θ′)

 , (25)

where the matrix a is defined in Eq. (15) (recall that for linear constraints that a is indepen-
dent of θ and that ∂χ2/∂θi = 0 when evaluated at the unconstrained solution θ′).

For the derivatives evaluated at γ ′ we find
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Aij =
∂Fi

∂γj

∣∣∣∣∣
γ′

=



∂2χ2

∂θi∂θj

∣∣∣
θ′

= 2W i = 1, . . . ,M, j = 1, . . . ,M ,

∂cj−M

∂θi
= aki i = 1, . . . ,M, j = M + 1, . . . ,M +K, k = j −M ,

∂ci−M

∂θj
= akj i = M + 1, . . . ,M +K, j = 1, . . . ,M, k = i−M,

0 i = M + 1, . . . ,M +K, j = M + 1, . . . ,M +K.
(26)

Note that terms involving the second derivatives of c(θ) do not appear as we are assuming
linear constraints. The matrix A can thus be written

A =

 2W aT

a 0

 , (27)

and Eq. (22) therefore becomes

F(γ̂) =

 aTλ′

c(θ′)

+

 2W aT

a 0


 θ̂ − θ′

λ̂− λ′

 = 0 . (28)

In the first M rows of this system of equations, the terms aTλ′ cancel and one finds

2W (θ̂ − θ′) + aT λ̂ = 0 . (29)

Rows M + 1 to M +K give

c(θ′) + a(θ̂ − θ′) = 0 . (30)

We also have Eq. (14) which can be used to express c(θ′) as

c(θ′) = c(θ̃) + a(θ′ − θ̃) , (31)

where θ̃ is an arbitrary constant expansion point. The idea is now to use Eqs. (29), (30) and
(31) to eliminate c(θ′) and λ̂ and thus give a relation that can be solved for θ̂ in terms of
θ′ along with constant terms. Then by using the known relation between θ′ and the original
data y together with error propagation we can find the covariance matrix of the constrained
estimators θ̂.

Equation (29) can be rewritten as (cf. Eq. (7.95) in [4])

θ̂ − θ′ = −1

2
W−1aT λ̂ . (32)

Substituting into Eq. (30) and solving for λ̂ gives (cf. Ref. [4], Eq. (7.96)),

λ̂ = 2(aWaT )−1c(θ′) . (33)

Now using Eq. (31) for c(θ′) in Eq. (33) gives
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λ̂ = 2(aWaT )−1
[
c(θ̃) + a(θ′ − θ̃)

]
. (34)

Substituting this back into Eq. (29) and solving for θ̂ gives (cf. Ref. [4], Eq. (7.98))

θ̂ =
[
I −W−1aT (aW−1aT )−1a

]
θ′ + const., (35)

where the constant term includes the fixed expansion point θ̃ as well as the matrices a and W .
Here a is constant as it is independent of θ for linear constraints and thus does not depend
on where the derivatives of c(θ) are evaluated. Furthermore W = RTV −1R is independent
of the data provided the expectation values of the data are linear in the parameters and is
thus also a constant given that restriction.

Now to find the covariance of θ̂ we recall that the covariance of the unconstrained estima-
tors θ′ is U ′ = W−1. Furthermore define Wa = (aW−1aT )−1. Then using error propagation
one has for Uij = cov[θ̂i, θ̂j ]

U =
(
I −W−1aTWaa

)
U ′
(
I −W−1aTWaa

)T
= W−1 − 2W−1aTWaaW

−1 +W−1aTWaaW
−1aTWaaW

−1 . (36)

Using aW−1aT = W−1
a in the last line above gives the final result

U = W−1 −W−1aTWaaW
−1

= W−1 −W−1aT (aW−1aT )−1aW−1 . (37)

This formula for the covariance of the constrained estimators is one way of expressing the
final result of this section. It can also be directly related to the matrix A as given in Eq. (27).
The inverse of a 2× 2 block matrix can be written (see, e.g., Ref. [5]),

(
A B

C D

)−1

=

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
. (38)

For a matrix of the form of A in Eq. (27) by substituting A → 2W , B → aT , C → a and
D → 0 one finds

A−1 =

 2W aT

a 0

−1

=
1

2

 W−1 −W−1aT (aW−1aT )−1aW−1 2W−1aT (aW−1aT )−1

2(aW−1aT )−1aW−1 −4(aW−1aT )−1

 .

(39)

A somewhat more convenient form is found using H = 2W , i.e.,

Hij =
∂2χ2

∂θi∂θj

∣∣∣∣∣
θ′

(40)
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is the Hessian matrix of χ2 evaluated at its unconstrained minimum. Equation (39) becomes

A−1 =

 H aT

a 0

−1

=

 H−1 −H−1aT (aH−1aT )−1aH−1 H−1aT (aH−1aT )−1

(aH−1aT )−1aH−1 −(aH−1aT )−1

 .

(41)

By comparing the expression for the covariance matrix U found in Eq. (37) to either of
Eqs. (39) or (41) one sees that U is given by the upper-left (M × M) submatrix of 2A−1,
thus proving the result first spotted by Olaf.

This result comes with some restrictions, namely, the constraints must be linear and the
expectation values of the measurements must be linear in the parameters. One can see how
these conditions are relevant as the matrix A used to compute U =

[
2A−1

]
M×M is defined as

∂Fi/∂θj evaluated at the unconstrained estimators, whereas the corresponding matrix defined
in the first of Eqs. (4) is evaluated at solutions to the constrained problem. Provided both
linearity requirements hold, the matrices a and W that enter into A are independent of the
parameters and thus it does not matter whether one evaluates at θ̂ or θ′. If the linearity
conditions do not hold then the equivalence between U = 2A−1 found here and U = CV CT

with C = −A−1B from Eq.( 5) is only approximate.
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