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Abstract

The statistical significance that characterizes a discrepancy between a measurement
and theoretical prediction is usually calculated assuming that the statistical and sys-
tematic uncertainties are known. Many types of systematic uncertainties are, however,
estimated on the basis of approximate procedures and thus the values of the assigned
errors are themselves uncertain. Here the impact of the uncertainty on the assigned un-
certainty is investigated in the context of the muon g−2 anomaly. The significance of the
observed discrepancy between the Standard Model prediction of the muon’s anomalous
magnetic moment and measured values are shown to decrease substantially if the relative
uncertainty in the uncertainty assigned to the Standard Model prediction exceeds around
30%. The reduction in sensitivity increases for higher significance, so that establishing a
5σ effect will require not only small uncertainties but the uncertainties themselves must
be estimated accurately to correspond to one standard deviation.
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1 Introduction

The recent measurement of the muon’s anomalous magnetic moment at Fermilab’s Muon
g − 2 Experiment [1], when averaged with the 2006 value from Brookhaven [2] was found to
be in disagreement with the Standard Model (SM) prediction [3] with a significance of 4.2σ.

The significance of the discrepancy treats both the measurements and the theoretical
prediction as Gaussian distributed quantities whose standard deviations are exactly known.
Although the statistical errors are no doubt estimated with negligible uncertainty, this is not
necessarily the case for systematic errors, particularly those of the SM prediction.

Here the method for incorporating uncertainties on reported systematic errors of Ref. [4]
is applied to the muon g−2 significance. Section 2 describes the input values for the analysis
and Sec. 3 gives a brief description of the statistical model. Results are shown in Sec. 4 and
finally some conclusions are drawn in Sec. 5.

The recent result from Borsanyi et al. [5] using lattice QCD gives an SM prediction for
g−2 that differs less from the measured value. As the purpose of this note is to illustrate the
importance of the assigned systematic uncertainty for the case of a significant discrepancy,
we focus on the 4.2σ difference highlighted in Ref. [1] and leave the lattice result for future
consideration.

2 Input values

To simplify the numerical treatment and presentation of the results, the values aµ = (g−2)/2
are transformed according to

y = aµ × 109 − 1165900 . (1)

The recent FNAL measurement [1] when combined with the 2006 value from BNL [2] results
in an averaged experimental value of

yexp = 20.61± 0.41 .

The uncertainty reflects both statistical (0.37) and systematic (0.17) errors. The Standard
Model prediction is given in Ref. [3] as

ySM = 18.10± 0.43 .

The uncertainty is dominated by the hadronic vacuum polarization (0.40) and to a lesser
extent the hadronic light-by-light contribution (0.18).

3 Including uncertainties in estimates of systematic errors

In this note, the gamma variance model of Ref. [4] is used to include an uncertainty in
assigned systematic errors into the significance of the observed anomaly. This model treats
values v of systematic variances (i.e., v = s2 where s is the estimated standard deviation) not
as fixed constants but rather as estimates that follow a gamma distribution. The expectation
values E[v] become adjustable parameters of the model, and the standard deviations σv are
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fitted to reflect the accuracy with which the systematic error is estimated. To do this, the
analyst supplies parameters r = σv/2E[v] ≈ σs/E[s], which to first approximation represent
the relative uncertainty in the assigned systematic errors.

Here we apply this method only to the uncertainty in the Standard Model prediction
ySM. This is by far the largest systematic uncertainty and owing to its theoretical origin it
is inherently difficult to estimate precisely. That is, we treat the value of vSM = (0.43)2 as a
gamma-distributed estimate of the true variance σ2SM of ySM, and we assign to its distribution
a relative “error on the error” rSM. In principle, the model can be applied to any of the
assigned uncertainties, including the experimental systematic error. As this is substantially
smaller than the SM uncertainty we leave this for future investigation.

The likelihood function of the gamma variance model contains as free parameters the mean
µ and variance σ2SM of ySM. The profile log-likelihood function is obtained by evaluating σ2SM
with the value that maximizes the likelihood for a given µ. This is up to an additive constant
a function Q(µ) that plays the role of the χ2 in a least-squares average, but with the usual
quadratic term for ySM replaced by a logarithmic one:

Q(µ) =
(yexp − µ)2

σ2exp
+

(
1 +

1

2r2SM

)
ln

[
1 + 2r2SM

(ySM − µ)2

vSM

]
. (2)

If the variance of ySM is estimated very accurately then rSM � 1 and by expanding the
logarithm one recovers the usual quadratic constraint.

As discussed in Ref. [4], a usual least-squares average with known uncertainties is equiva-
lent to having Gaussian distributed inputs. As the tails of a Gaussian decrease very rapidly,
a Gaussian-distributed value is extremely unlikely to depart from its mean by, say, five stan-
dard deviations. The gamma variance model is equivalent to replacement of the Gaussian
by a Student’s t distribution (see, e.g., Ref. [6]), where the number of degrees of freedom is
ν = 1/2r2. Thus a greater relative uncertainty on an assigned systematic error corresponds
to a lower number of degrees of freedom and therefore to tails that are longer than those of
a Gaussian.

By minimizing the function Q(µ) of Eq. (2) with respect to µ one obtains the maximum-
likelihood estimator µ̂. This is a weighted average of the SM prediction and the experimental
measurement, and in the current problem it is not of direct interest. The important result is
rather the goodness of fit, which can be quantified by the statistic q = Q(µ̂).

A higher value of q represents increasing incompatibility between the measured and pre-
dicted values yexp and ySM. This can be quantified with the p-value

p =

∫ ∞
qobs

f(q) dq , (3)

where f(q) is the probability density function (pdf) of q and qobs is its observed value. For
the usual least-squares case, this would be a chi-square distribution for one degree of freedom.
Here, however, because of the logarithmic term in Eq. (2), the pdf of q is found to depart
from chi-square when the error-on-error parameter rSM increases.

By construction the pdf of q is independent of µ, but as rSM increases, f(q) acquires a
dependence on σ2SM. To find the desired p-value of the composite hypothesis, one should
take the maximum p found for any σ2SM. Here this is approximated by computing the pdf

of q with the parameters set to their maximum likelihood estimators (MLEs) µ̂ and σ̂2SM
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(see, e.g., Refs. [7], [8] Sec. 40.3.2.1). After µ̂ is found by minimizing Q(µ) from Eq. (2), the
corresponding estimator for σ2SM is given by

σ̂2SM =
vSM + 2r2SM(ySM − µ̂)2

1 + 2r2SM
. (4)

To find the p-value as a function of rSM, one can thus generate values of q with Monte
Carlo using the MLEs from the real data for µ and σ2SM. To determine a very small p-value
corresponding to a significance of 5σ or higher, however, the required amount of simulated
data becomes very large. In Ref. [4] it is shown that by using a simple correction due to
Bartlett [9], one may obtain p-values with far less computation. This correction was used
in the present analysis and found to agree well with the full Monte Carlo method in regions
where the latter is computationally feasible.

As is the usual practice in Particle Physics, the p-value is converted into an equivalent
significance Z according to

Z = Φ−1(1− p/2) , (5)

where Φ−1 is the standard Gaussian quantile (inverse of the standard Gaussian cumulative
distribution). The formula used here is appropriate for a two-sided hypothesis test, i.e., a
positive or negative difference between measurement and prediction is regarded as equally dis-
crepant. In the limit where rSM � 1 and the logarithmic term in Eq. (2) becomes quadratic,
the significance is given by Z =

√
q, i.e., the square root of the minimized chi-squared.

4 Significance of the muon g − 2 anomaly

In this section the procedure outlined above is applied to the significance of the muon g − 2
anomaly. It is up to the theory community and in particular the authors of Ref. [3] to assess
the reliability of the error estimate for the SM prediction, and therefore the significance of
the observed discrepancy is presented below as a function of rSM. It is not intended to imply
here that the assigned uncertainty of 0.43 is incorrect, only that it could be uncertain and
thus one may ask what impact such an uncertainty could have on the significance of the
discrepancy.

Figure 1 shows the significance in σ of the discrepancy between the experimental and
predicted values as a function of rSM using the gamma-variance model described above. The
figure also shows the significance that one would obtain from a naive model, in which one
simply inflates the SM uncertainty σSM by

σySM → σSM(1 + rSM) . (6)

As can be seen in the figure, the naive approach is quite close to the gamma variance model
for relative uncertainties below around 20% (i.e., rSM ≤ 0.2). But already for rSM = 0.3 the
predictions differ substantially, with a significance of 3.12 from the gamma variance model
and 3.63 from the naive model. The difference is increases at rSM = 0.6, with significances
of 1.94 and 3.13.

Additional data taking from the Muon g − 2 Experiment is expected reduce the exper-
imental uncertainty. Suppose that the measured value remains the same but with half of
its current uncertainty, i.e., yfuture = 20.61 ± 0.205, and that the SM prediction remains
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Figure 1: The significance of the
muon g−2 discrepancy as a function
of the relative uncertainty rSM in
the quoted systematic uncertainty
of the SM prediction (the relative
“error on the error”).
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Figure 2: The significance of the
muon g−2 discrepancy as a function
of rSM assuming the 2021 uncertain-
ties (with SM uncertainty from [3]),
with the experimental uncertainty
reduced by a factor of two, and with
the SM uncertainty also halved.

ySM = 20.40 ± 0.43. Figure 2 shows the significance of the discrepancy as a function of the
relative uncertainty on the error assigned to the SM prediction rSM.

From Fig. 2 one sees that improved experimental accuracy is of almost no benefit unless
the accuracy with which one assigns the SM uncertainty is kept below around 20% Also shown
on the plot is the significance using an experimental uncertainty reduced by a factor of two
and an SM uncertainty σSM halved from 0.43 to 0.215. The situation is improved somewhat
by a reduction in the SM uncertainty, but still only if this uncertainty is itself assigned to
correspond accurately to one standard deviation. If the naive recipe σSM → (1 + rSM)σSM
is applied to the case of halved uncertainties one finds a significance of 6.6σ at rSM = 0.5,
compared to only 2.6σ from the gamma variance model.

5 Discussion and conclusions

It should not be a surprise that the significance of the discrepancy between SM prediction
and experiment decreases when one supposes an additional source of uncertainty, namely, the
“error on the error” represented by rSM. What is important to note, however, is that simply
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inflating the corresponding uncertainty by a factor of (1 + rSM) does not adequately reflect
the decrease in significance, as can seen by the curves in Fig. 1. Rather, the gamma variance
model, which treats the assigned systematics as gamma-distributed estimates, results in a
more rapid degradation of the significance for a relative uncertainty greater than a certain
level, starting around 20% for this problem. If the relative uncertainty is 30%, then the
significance drops to 3.1σ, and it goes below 2σ for a relative uncertainty of 60%.

If the all of the nominal uncertainties are reduced by a factor of two relative to their
current values, the discovery significance under assumption of rSM = 0 is 8.4σ. But this
reduces to 5σ assuming a relative uncertainty in the theory error itself of 22%, and to 4σ
for 30%. These results reflect the intrinsic difficulty in establishing a discovery at a high
significance level if the uncertainties themselves are not accurately determined, and as a
consequence the corresponding distributions acquire non-Gaussian tails. This underlines the
importance of establishing appropriate procedures for quantifying systematic uncertainties
both for the muon g − 2 anomaly as well as for any investigations seeking to discover new
phenomena.

Acknowledgements

Many thanks for useful comments are due to Olaf Behnke, Kyle Cranmer, Louis Lyons and
Veronique Boisvert. This work was supported in part by the U.K. Science and Technology
Facilities Council.

References

[1] B. Abi et al. (Muon g−2 Collaboration), Measurement of the Positive Muon Anomalous
Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).

[2] G. W. Bennett et al. (Muon g − 2 Collaboration), Final report of the E821 muon
anomalous magnetic moment measurement at BNL, Phys. Rev. D 73, 072003 (2006).

[3] T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, and T. Blum et al., The anomalous
magnetic moment of the muon in the standard model, Phys. Rep. 887, 1 (2020).

[4] G. Cowan, Statistical Models with Uncertain Error Parameters, Eur. Phys. J. C (2019)
79:133.

[5] Sz. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from
lattice QCD, Nature vol. 593, (2021) 51-55.

[6] G. Cowan, Statistical Data Analysis, Oxford University Press, 1998.

[7] K. Cranmer, Statistical challenges for searches for new physics at the LHC, in Pro-
ceedings of PHYSTAT05, L. Lyons and M.K. Unel (eds.), Imperial College Press, pp.
112-123 (2005).

[8] P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[9] M.S. Bartlett, Properties of sufficiency and statistical tests, Royal Society of London
Proceedings Series A 160, (1937) 268-282.

6


