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An apparent paradox from the likelihood ratio

To compare two point hypotheses one can carry out a frequentist statistical test or com-
pute a Bayes factor. For the case of Gaussian data x with two different means µ0 and µ1 and
the same standard deviation σ, there is an apparent mystery in that the two approaches ap-
pear to lead to very different conclusions. Although the frequentist and Bayesian approaches
can in general lead to different results, the particular paradox in this case can be resolved,
as shown below.

Consider the following two hypotheses:

H0 : x ∼ Gauss(µ0, σ) , (1)

H1 : x ∼ Gauss(µ1, σ) . (2)

That is, we assume that the measurement can be represented by a single Gaussian distributed
variable x with mean µ (equal to either µ0 or µ1) and standard deviation σ, so that the
likelihood function is

L(µ, σ) =
1√
2πσ

e−(x−µ)2/2σ2

. (3)

According to the Neyman-Pearson Lemma (see, e.g., Ref. [2]), when defining a test of
a given size α of H0, to obtain the highest power with respect to the alternative H1 the
optimal test statistic is given by the likelihood ratio L(µ1)/L(µ0). Equivalently we can use a
monotonic function of this and therefore we define the statistic

q = −2 ln
L(µ1)

L(µ0)
=

(x− µ1)
2

σ2
− (x− µ0)

2

σ2
=

µ2
1 − µ2

0 − 2(µ1 − µ0)x

σ2
. (4)

That is, the quadratic terms in (4) cancel and the resulting statistic is a linear function of
x. The variable q therefore also follows a Gaussian distribution with expectation value and
variance under assumption of a given µ given by

E[q|µ] =
µ2
1 − µ2

0 − 2(µ1 − µ0)µ

σ2
, (5)

V [q] =
4(µ1 − µ0)

2

σ2
. (6)

These results were given in Eqs. (73) and (74) of Ref. [1] for the special case of µ0 = 0 and
µ1 = µ.

The paradox is the following: If one has µ0 and µ1 very close to each other, then the two
distributions f(q|H0) and f(q|H1) are also very close, and therefore the ratio
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r =
f(q|H1)

f(q|H0)
(7)

should be close to one. That is, if one has no sensitivity (equal means) then one should not
be able to favour one hypothesis over the other. On the other hand, if one computes this
ratio for a certain value of q, say, q = 4, then surely the likelihood ratio of the data

L(x|H1)

L(x|H0)
(8)

cannot be unity, and in fact from the definition (4) it must be

L(x|H1)

L(x|H0)
= e−q/2 . (9)

So the Bayes factor (here just the likelihood ratio) is e−q/2 and may clearly depart from unity
and give arbitrarily strong evidence in favour of one hypothesis or the other.

One can show, however, that even in the limit when µ0 and µ1 become very close to each
other, for a fixed q the likelihood ratio is indeed always given by Eq. (9), and furthermore
one obtains exactly the same value for the ratio r from Eq. (7). In the case where the two
means µ0 and µ1 are exactly equal, then from Eq. (4) one has q = 0 and thus the distribution
of q is a delta function at zero. This resolves the paradox.

This can be checked explicitly by computing the ratio r from Eq. (7), where the distribu-
tions f(q|H1) and f(q|H0) are Gaussian with mean and variance given by Eqs. (5) and (6).
One finds

r =
e−(q−E[q|1])2/2V [q]

e−(q−E[q|0])2/2V [q]
(10)

or equivalently

−2 ln r =
E[q|1]2 − E[q|0]2 − 2(E[q|1]− E[q|0])q

V [q]
(11)

The ingredients are

E[q|0] =
µ2
1 − µ2

0 − 2(µ1 − µ0)µ0

σ2
, (12)

E[q|1] =
µ2
1 − µ2

0 − 2(µ1 − µ0)µ1

σ2
= −E[q|0] , (13)

V [q] =
4(µ1 − µ0)

2

σ2
, (14)

and therefore

−2 ln r =
4(µ2

1 + µ2
0 − 2µ0µ1)

σ2

σ2

4(µ1 − µ0)2
q = q . (15)
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The two likelihood ratios are therefore equal, i.e.,

L(x|H1)

L(x|H0)
=

f(q|H1)

f(q|H0)
= e−q/2 , (16)

and thus at any given q the likelihood ratio is equal to e−q/2.
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