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Note on rate and shape uncertainties

Consider a set of differential cross sections dσi/dy where i is a label for a particular final
state, e.g., Higgs + n jets with n = 0, 1, . . . and y here stands for a continuous kinematic
variable such as rapidity, pT,H, etc. In practice we will integrate the dσi/dy over some bins
in y to form quantities

σij =

∫

j

dσi
dy

dy (1)

where the index j labels a particular bin in the variable y. We would like to express the σij
as functions of some parameters that can be varied to reflect the uncertainty in the predicted
value of σij .

This can be done by expressing the differential cross sections as the product of a total
cross section and a probability distribution function (pdf) in y:

dσi
dy

= σifi(y) (2)

where by construction the pdfs fi(y) are normalized to unity. The uncertainties in the
predictions for the total cross sections σi and the pdfs fi(y) may be related but in general
are different. We may therefore regard the parametrization to be of the form

dσi
dy

(θ) = σi(θ)fi(y|θ
′); , (3)

where θ and θ′ are sets of nuisance parameters that are not in general disjoint, and θ is the
union of θ and θ′. In fact it is not necessary to consider the factorization in Eq. (3) for what
follows.

As a first step, it may be convenient to map the kinematic variable y onto a variable x
defined on 0 ≤ x ≤ 1. For example, this can be done using

x = F0(y) , (4)

where F0(y) is the cumulative distribution of y computed to some given accuracy, e.g., 0th
order, but in any case let us assume that F0 is a fixed known function.1

An advantage of the transformation (4) is that the pdf of x, g(x), is then to first ap-
proximation uniform on [0, 1]. To greater accuracy let us suppose can be expressed as a
perturbation series in some expansion parameter α,

g(x) = g0(x) + αg1(x) + α2g2(x) + . . . . (5)

1This is the procedure used by FT for the B shape function.
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Here if the 0th order prediction F0(y) has been used in Eq. (4), then g0(x) = 1.

Let us suppose that the prediction for g(x) is known to, say, 2nd order, and the uncertainty
arises from the missing functions g3(x), g4(x), . . . . Each of these can be expressed in general
as an expansion in some basis functions

gi(x) =
∑

k

θkϕk(x) . (6)

The θk thus enter the problem as nuisance parameters. For the basis functions ϕk(x)
there are many possibilities, such as Bessel functions, Legendre polynomials, etc., (mapped
onto the interval 0 ≤ x ≤ 1). One could for example use Bernstein polynomials. The set of
m+ 1 Bernstein basis polynomials of order m are defined as

bk,m(x) =
m!

k!(m− k)!
xk(1− x)m−k 0 ≤ x ≤ 1 . (7)

The Bernstein basis polynomials for orders 0 through 5 are shown in Fig. 1.
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Figure 1: Bernstein basis polynomials of different orders n.

For θk = 1, k = 0, . . . ,m in Eq. (6), one has gi(x) = 1, so it is easy to identify the point in
parameter space that corresponds to no modification.

An important property of Bernstein polynomials is that a basis polynomial of a given
order m− 1 can always be written in terms of those of order m:

bk,m−1(x) =
m− k

m
bk,m(x) +

k + 1

m
bk+1,m(x) . (8)

2



This means that the Bernstein polynomials defined using basis functions of successively in-
creasing order form a nested family. That is, the model of order m contains as a special case
the model of order m− 1. This will be important in constructing the likelihood ratio test to
determine whether it is necessary to increase the number of parameters in the model.

To determine the appropriate number of basis functions one needs to consider the amount
of structure expected in the function gi(x). For Bernstein basis polynomials of order m, for
example, the peak of bk,m is at k/m, i.e., the peaks are separating by a spacing of 1/m. So
if one can specify a rough length ∆x below which one does not expect significant structure,
then one should choose an order m ≈ 1/∆x.

To use the parametrized prediction in an analysis, one needs to specify what parameters
will be added to the model and how they should be constrained. Suppose one considers only
one additional function gi(x) corresponding to the first missing order in the expansion. One
would then have a corresponding set of coefficients θ = (θ0, θ1, . . . , θm).

In a Bayesian analysis, one could then specify a prior pdf π(θ) that represents one’s
degree of belief as to where these values lie. As a default it would probably be peaked about
θ = 0, but this is not necessarily the case. The components may or not be correlated; this is
subjective input that must be supplied by the analyst.

In a frequentist analysis, one must take the nominal values for θ and treat them as
measurements, θ̃. These will have a sampling distribution, which could be, e.g., a Gaussian,

p(θ̃|θ) =
1

(2π)N/2|V |1/2
exp

[

− 1

2
(θ̃ − θ)TV −1(θ̃ − θ)

]

. (9)

Here Vij = cov[θ̃i, θ̃j ] is the covariance matrix of the “measurements” of the nuisance param-
eters, which must be supplied by the analyst. The nominal values of θ̃ would normally be
take to be zero.

Alternatively one may consider that the measured values λ̃i of λi = ln θi follow a Gaussian
distribution, in which case the θ̃i = eλ̃i follow a log-normal distribution. One should further
consider the possibility that the tails of the distribution fall off less quickly than those of a
Gaussian, e.g., using a Student’s t distribution.

Once the function g(x) and thus also the differential cross section dσi/dy are known as a
function of the vector of nuisance parameters θ and the nature of the constraints has been
specified, then these can be used in an analysis with any desired function of the dσi/dy, such
as the cross section for a particular subprocess within any given bins of y.
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