Glen Cowan
14 May 2014

Comment on "related parameters"

It can happen that the model for two independent measurements, say, x and y, contain the same parameter of interest μ and a common nuisance parameter θ, such as the jet-energy scale. To combine the measurements one constructs the full likelihood

$$
\begin{equation*}
L(\mu, \theta)=P(x \mid \mu, \theta) P(y \mid \mu, \theta) . \tag{1}
\end{equation*}
$$

Although the parameter θ is thought of initially as being common to the two measurements, this may not be a good approximation. For example, the two analyses may use jets with different angles and energies, so a single energy-scale parameter θ may not represent an accurate model.

One way of extending the model is to assume that the appropriate nuisance parameter for one of the measurements, say, x, is θ and for the other, y, there is a different value θ^{\prime}. One can propose a relation between the two, such as

$$
\begin{equation*}
\theta^{\prime}=\theta+\varepsilon, \tag{2}
\end{equation*}
$$

where ε is an additional nuisance parameter, which we expect to be small.
The frequentist approach to the problem is to treat the best estimates for θ and ε as if they were measured quantities (they may or may not actually result from real measurements). Suppose these values are $\tilde{\theta}$ and $\tilde{\varepsilon}$. Here tildes are used instead of hats for the estimates because the hats will be used later with a different meaning in the profile likelihood ratio.

One might model $\tilde{\theta}$ and $\tilde{\varepsilon}$ as, for example, independent and Gaussian distributed, i.e.,

$$
\begin{equation*}
p(\tilde{\theta}, \tilde{\varepsilon} \mid \theta, \varepsilon)=\operatorname{Gauss}\left(\tilde{\theta} \mid \theta, \sigma_{\tilde{\theta}}\right) \operatorname{Gauss}\left(\tilde{\varepsilon} \mid \varepsilon, \sigma_{\tilde{\varepsilon}}\right), \tag{3}
\end{equation*}
$$

where $\sigma_{\tilde{\theta}}$ and $\sigma_{\tilde{\varepsilon}}$ are the standard deviations (or "nominal errors") for the estimates of θ and ε. Since the starting point was that the two parameters θ and θ^{\prime} represent the same thing, one would usually take $\tilde{\varepsilon}=0$.

For this model it is easy to work out the covariance between $\tilde{\theta}$ and $\tilde{\theta}^{\prime}$. We are treating $\tilde{\theta}$ and $\tilde{\varepsilon}$ as independent, so therefore we have

$$
\begin{equation*}
\operatorname{cov}\left[\tilde{\theta}, \tilde{\theta}^{\prime}\right]=\operatorname{cov}[\tilde{\theta}, \tilde{\theta}+\tilde{\varepsilon}]=\operatorname{cov}[\tilde{\theta}, \tilde{\theta}]+\operatorname{cov}[\tilde{\theta}, \tilde{\varepsilon}]=\sigma_{\tilde{\theta}}^{2} \tag{4}
\end{equation*}
$$

Furthermore we have the variance of $\tilde{\theta}^{\prime}, \sigma_{\tilde{\theta}^{\prime}}^{2}=\sigma_{\tilde{\theta}}^{2}+\sigma_{\tilde{\varepsilon}}^{2}$, so the correlation coefficient for $\tilde{\theta}$ and $\tilde{\theta}^{\prime}$ is

$$
\begin{equation*}
\rho\left[\tilde{\theta}, \tilde{\theta^{\prime}}\right]=\frac{\operatorname{cov}\left[\tilde{\theta}, \tilde{\theta}^{\prime}\right]}{\sigma_{\tilde{\theta}} \sigma_{\tilde{\theta}^{\prime}}}=\frac{1}{\sqrt{1+\frac{\sigma_{2}^{2}}{\sigma_{\tilde{\theta}}^{2}}}} \tag{5}
\end{equation*}
$$

This latter relation is not in fact necessary; the entire analysis can proceed using the model

$$
\begin{equation*}
L(\mu, \theta, \varepsilon)=P(x \mid \mu, \theta) P(y \mid \mu, \theta, \varepsilon) p(\tilde{\theta}, \tilde{\varepsilon} \mid \theta, \varepsilon), \tag{6}
\end{equation*}
$$

where here the joint distribution for $\tilde{\theta}$ and $\tilde{\varepsilon}$ has been written symbollically as p; this can be a product of Gaussians as above or some other model as appropriate.

Values of μ are then tested using the usual profile likelihood ratio,

$$
\begin{equation*}
\lambda(\mu)=\frac{L(\mu, \hat{\hat{\theta}}, \hat{\hat{\varepsilon}})}{L(\hat{\mu}, \hat{\theta}, \hat{\varepsilon})} . \tag{7}
\end{equation*}
$$

