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Note on Obtaining a Response Matrix from MC

1. General procedure

Suppose we have a Monte Carlo model that generates events characterized by a true value
y, and then simulates the measurement of this variable resulting in an observed value x. By
generating (x, y) pairs one can produce the scatter plot shown in Fig. 1, which reflects the
joint pdf f(x, y).

Figure 1: Illustration of a scat-
ter plot of an observed variable x
versus the true value y.

Let nij denote the number of events found in the cell at row i and column j. Suppose
the scatter plot has M bins for the true values and N for the observed ones. If an event is
generated in column j but not found anywhere, one can put this in an overflow bin, e.g., n0j .
In an unfolding problem, one needs the response matrix

Rij = P (x found in bin i|y in bin j) =
nij∑M
j=0 nij

. (1)

It is in general difficult to find this matrix using MC events alone, since many cells may have
few or no entries. One would like therefore to smooth the distribution in some way, e.g., by
fitting a parametric function to the scatter plot and then integrating this function over the
appropriate regions to determine the response matrix.

The problem of finding an appropriate parametric pdf may be come simpler if one first
defines the relative deviation between the observed and true values as

u =
x− y
y

(2)

A scatter plot of u versus y could then have the form as shown in Fig. 2.

In many physical situations, the conditional pdf of u given y will be a reasonably bell-
shaped curve whose width and other shape parameters will vary only slowly with the true
value y. One could therefore hope to parametrize such a density with a function g(u|y,θ).
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Figure 2: Illustration of a scat-
ter plot of the relative deviation
u = (x − y)/y versus the true
value y.

As a simple example, one might suppose that this is given by a Gaussian whose mean and
width vary smoothly as a function of y, e.g.,

g(u|y) =
1√
2πσ

e−(u−µ)
2/2σ2

, (3)

µ = θ1 + θ2y , (4)

σ = θ3 + θ4y + θ5y
2 . (5)

In this way the entire joint density is specified by the parameters θ = (θ1, . . . θ5). Regardless
of the details let us suppose that one succeeds in finding a parametric density g(u|y,θ) and
that the parameters are estimated using the MC data.

To fit the response function’s parameters, we can use the fact that the joint density of u
and y is

g(u, y) = g(u|y)g(y) , (6)

where g(y) is the marginal pdf of y. Given a sample of (u, y) points, the log-likelihood function
for θ is

lnL(θ) =
∑
i

ln g(ui, yi|θ) =
∑
i

ln g(ui|yi,θ) + C , (7)

where C =
∑
i ln g(yi) is a constant in the sense that it does not depend on any of the

detector’s response parameters θ. By exploiting this fact one can use the pairs of generated
points (ui, yi) to construct the log-likelihood function (7) and use it to estimate θ.

The equivalent unbinned maximum-likelihood fit could be made using the original density
f(x, y). But by transforming to u and y one can construct histgrams of u in bins of y and
fit these simultaneously. In this way the individual histograms can be inspected and their
goodness-of-fit evaluated.

Once g(u|y) is known in parametric form, one can transform back to the pdf for x using

f(x|y) = g(u(x)|y)

∣∣∣∣dudx
∣∣∣∣ =

1

y
g

(
x− y
y

∣∣∣∣ y) . (8)
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The response matrix is found by integrating f(x|y) over the bins in x while averaging
over the bins in y, i.e.,

Rij = P (x ∈ i|y ∈ j) =
P (x ∈ i ∩ y ∈ j)

P (y ∈ j)
=

∫
j dy

∫
i f(x, y) dx∫

j dy
∫
f(x, y) dx

(9)

=

∫
j dy f(y)

∫
i f(x|y) dx∫

j f(y) dy
≈
∫
i
f(x|〈y〉j) dx , (10)

where 〈y〉j is the mean value of y within bin j. That is, we approximate the value of f(x|y)
averaged over the bin j with respect to the marginal density f(y) (same as g(y) above) by
evaluating f(x|y) with y = 〈y〉j , which is exact only if f(x|y) is a linear in y over the bin.
For sufficiently small bins this should be an adequate approximation.

2. Determining the response matrix from binned data

If the number of generated events is very large, a single function evaluation of lnL(θ) may
become prohibitively slow. In that case one can bin the data in both u and y. Suppose the
full sample has ntot events, and nij represents the number found in cell (i, j). Here as usual
the first index will represent the row, i.e., the u value, and the second index gives the column
or y.

The predicted number of events in cell (i, j) is

νij(θ) = ntot

∫
(i,j)

g(u, y) du dy ≈ ntotg(ui, yj)∆ui∆yj (11)

where ∆ui and ∆yj give the size of the cell and g(ui, yj) is evaluated with the ui and yj in the
centre of cell (i, j). This holds if the distribution changes linearly over a cell, which should
be a reasonable approximation for sufficiently small bins.

Since the events are independent and the total number ntot is fixed, the set of nij follow
a multinomial distribution [1],

P (n;θ) =
ntot!∏
i,j nij !

∏
i,j

(
νij(θ)

ntot

)nij

. (12)

The log-likelihood function is therefore

lnL(θ) =
∑
i,j

nij ln νij(θ) + C , (13)

where C represents terms that do not depend on the parameters θ and can be dropped.

In doing the maximum-likelihood fit, it is useful to obtain a statistic that will provide a
measure of goodness of fit. With the multinomial likelihood function this can be done by
minimizing [1, 2]

χ2
M(θ) = −2 ln

P (n;ν)

P (n;n)
= 2

∑
i,j :nij 6=0

nij ln
nij
νij(θ)

. (14)
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This quantity is the same as −2 lnL(θ) up to an additive constant so minimizing it gives
maximum-likelihood estimators for θ. In the large-sample limit the mimized value of χ2

M

follows a chi-square pdf for a number of degrees of freedom equal to the number of cells
minus one, so it can be used as a measure of goodness-of-fit.
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