Approximate error on peak position for low s / b

This note gives an approximate formula for the statistical error on the position of a Gaussian peak of width σ on a flat background. The approximation holds in the limit where the expected number of signal events s is large compared to unity but small compared to the expected number of background events under the peak, which can be taken as the number contained in one σ.

Let x be the variable measured for each event and whose spectrum has a peak of width σ and position μ, e.g., here x represents the invariant mass of a photon pair from a Higgs decay. Suppose $-a \leq x \leq a$ with $a \gg \mu \gg \sigma$, i.e., the entire peak is well contained within the flat background. Under these conditions the final result will be independent of a.

The probability density function of x can be written as a mixture of uniform and Gaussian pdfs as

$$
\begin{equation*}
f(x ; \mu)=\frac{b}{s+b} \frac{1}{2 a}+\frac{s}{s+b} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \tag{1}
\end{equation*}
$$

where s is the total expected number of signal events and b is the expected number of background events in $[-a, a]$. One could model the observed number of events as Poisson distributed with a mean of $s+b$, but for purposes of this calculation it is good enough to take $n=s+b$.

For a sample of n independent events the likelihood function is

$$
\begin{equation*}
L(\mu)=\prod_{i=1}^{n}\left[\frac{b}{s+b} \frac{1}{2 a}+\frac{s}{s+b} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}}\right] . \tag{2}
\end{equation*}
$$

The log-likelihood is therefore

$$
\begin{equation*}
\ln L(\mu)=\sum_{i=1}^{n} \ln \left[1+\frac{2 a s}{b} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}}\right]+C \tag{3}
\end{equation*}
$$

where C represents terms that do not depend on the parameter μ. The maximum-likelihood estimator $\hat{\mu}$ is found by setting the derivative of $\ln L$ to zero, which in this case must be done numerically.

For a sufficiently large data sample the variance of $\hat{\mu}$ can be found from the second derivative of $\ln L$. For this we can obtain a simple expression in the limit where a small signal peak is sitting on top of a large background. The expected number of background events b is proportional to the (arbitrary) size of the interval, $2 a$. We therefore define β as the expected number of background events in one unit of mass resolution σ,

$$
\begin{equation*}
\beta=\frac{b \sigma}{2 a} . \tag{4}
\end{equation*}
$$

Having a small signal on a large background thus means $s \ll \beta$. In this case we can expand the logarithms in $\ln L$ to first-order, which gives

$$
\begin{equation*}
\ln L(\mu) \approx \sum_{i=1}^{n} \frac{s}{\beta} \frac{1}{\sqrt{2 \pi}} e^{-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}}+C \tag{5}
\end{equation*}
$$

and the second derivative is

$$
\begin{equation*}
\frac{\partial^{2} \ln L}{\partial \mu^{2}}=-\frac{s}{\sqrt{2 \pi} \beta \sigma^{2}} \sum_{i=1}^{n}\left[1-\frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right] e^{-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}} \tag{6}
\end{equation*}
$$

The inverse variance of $\hat{\mu}$ is given by the negative expectation value of the second derivative of $\ln L$,

$$
\begin{equation*}
\frac{1}{\sigma_{\hat{\mu}}^{2}}=-E\left[\frac{\partial^{2} \ln L}{\partial \mu^{2}}\right]=\frac{n s}{\sqrt{2 \pi} \beta \sigma^{2}} E\left[\left(1-\frac{(x-\mu)^{2}}{\sigma^{2}}\right) e^{-(x-\mu)^{2} / 2 \sigma^{2}}\right] \tag{7}
\end{equation*}
$$

The expectation value is taken with respect to the pdf from Eq. (1). The terms related to the uniform component of the pdf cancel; for the Gaussian part we can take the limits of integration to $\pm \infty$, i.e, we assume the Gaussian peak is well contained within the interval $-a \leq x \leq a$. The $E[\cdot]$ term then evaluates to $s /[(s+b) 2 \sqrt{2}]$, and furthermore we can set $n=s+b$. Solving Eq. (7) for the standard deviation $\sigma_{\hat{\mu}}$ gives the final result

$$
\begin{equation*}
\sigma_{\hat{\mu}}=2 \pi^{1 / 4} \frac{\sqrt{\beta}}{s} \sigma \tag{8}
\end{equation*}
$$

This result requires $s \ll \beta$ but one must also have s sufficiently large for the asymptotic approximation for the variance to be valid. The result should be sufficiently accurate for use in optimizing an analysis, but for a final determination of the statistical error on $\hat{\mu}$ one would use the full likelihood to find $\sigma_{\hat{\mu}}$ and/or a confidence interval for μ.

