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Approximate error on peak position for low s/b

This note gives an approximate formula for the statistical error on the position of a
Gaussian peak of width σ on a flat background. The approximation holds in the limit where
the expected number of signal events s is large compared to unity but small compared to the
expected number of background events under the peak, which can be taken as the number
contained in one σ.

Let x be the variable measured for each event and whose spectrum has a peak of width
σ and position µ, e.g., here x represents the invariant mass of a photon pair from a Higgs
decay. Suppose −a ≤ x ≤ a with a ≫ µ ≫ σ, i.e., the entire peak is well contained within
the flat background. Under these conditions the final result will be independent of a.

The probability density function of x can be written as a mixture of uniform and Gaussian
pdfs as
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where s is the total expected number of signal events and b is the expected number of
background events in [−a, a]. One could model the observed number of events as Poisson
distributed with a mean of s + b, but for purposes of this calculation it is good enough to
take n = s+ b.

For a sample of n independent events the likelihood function is
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The log-likelihood is therefore
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where C represents terms that do not depend on the parameter µ. The maximum-likelihood
estimator µ̂ is found by setting the derivative of lnL to zero, which in this case must be done
numerically.

For a sufficiently large data sample the variance of µ̂ can be found from the second
derivative of lnL. For this we can obtain a simple expression in the limit where a small signal
peak is sitting on top of a large background. The expected number of background events b is
proportional to the (arbitrary) size of the interval, 2a. We therefore define β as the expected
number of background events in one unit of mass resolution σ,
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Having a small signal on a large background thus means s ≪ β. In this case we can expand
the logarithms in lnL to first-order, which gives
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and the second derivative is
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The inverse variance of µ̂ is given by the negative expectation value of the second derivative
of lnL,
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The expectation value is taken with respect to the pdf from Eq. (1). The terms related to
the uniform component of the pdf cancel; for the Gaussian part we can take the limits of
integration to ±∞, i.e, we assume the Gaussian peak is well contained within the interval
−a ≤ x ≤ a. The E[·] term then evaluates to s/[(s + b)2

√
2], and furthermore we can set

n = s+ b. Solving Eq. (7) for the standard deviation σµ̂ gives the final result
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This result requires s ≪ β but one must also have s sufficiently large for the asymptotic
approximation for the variance to be valid. The result should be sufficiently accurate for use
in optimizing an analysis, but for a final determination of the statistical error on µ̂ one would
use the full likelihood to find σµ̂ and/or a confidence interval for µ.
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