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Decomposition of fit error into statistical and systematic

components

On 17 July 2017 the Higgs WG had a discussion on the decomposition of a total fit error
(e.g., in the Higgs mass) into statistical and systematic components [1]. This note sketches
out a possible way of approaching this problem.

1 Formalism for the total error

Suppose we measure a set of numbers x whose probability model has a parameter of interest
µ and a vector of nuisance parameters θ. These appear in a likelihood function L0(µ,θ) =
P (x|µ,θ), where the subscript 0 here refers to the absence of the constraint terms described
below.

Some of the components of θ con be constrained by auxiliary measurements y, whose
probability depends on the nuisance parameters, i.e., P (y|θ) ≡ Laux(θ). For example, for a
component θi there could be a measured value yi = θ̃i, described by a sampling distribution
p(θ̃i|θi) ≡ Li(θi). In some cases the auxiliary measurement could be based on the same data
sample as that used for the main measurement; that is, it could use an independent subset
of the events, but this subset will also scale with luminosity together with the subset used
for the main measurement. In other cases the auxiliary measurement could be a completely
separate experiment; in still others yi (or θ̃i) could simply represent the nominal value, e.g.,
of a theory parameter, and we treat this formally as if it were a measurement. Regardless
of the interpretation, the auxiliary measurements y are bundled together with the primary
measurements x (here assumed independent) to give the joint probability

P (x,y|µ,θ) = P (x|µ,θ)P (y|θ) , (1)

or written in terms of the corresponding likelihood terms,

L(µ,θ) = L0(µ,θ)Laux(θ) . (2)

By maximizing L(µ,θ) simultaneously over all of the parameters one obtains an estimator
µ̂ for the parameter of interest whose variance reflects the full statistical error, here called
σtot.

2 Decomposition into statistical and systematic components

Suppose we want to know how σtot will vary if we had a data sample of a different size, i.e.,
if we had a different luminosity. One may define a parameter

λ =
L
L0

(3)
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as the ratio of the hypothetical to real luminosities. Then the likelihood function can be
rewritten, at least approximately, as a function of λ. To do this one must simply scale all
quantities related to the number of events in the main data set with λ. This is done both for
the expected numbers of events (which are functions of the parameters µ and θ) as well as
for the observed numbers of events. This may leave a noninteger number of events, but for
now let us assume that the log-likelihood function remains well defined under this change (for
Poisson terms this should not be a problem as it is similar to using an Asimov data set). If
the likelihood contains any terms that contain directly a statistical error σi that is expected
to scale with luminosity in the usual way, then this should be replaced by σi/

√
λ. In this way

one obtains a new likelihood function

L(µ,θ;λ) , (4)

which contains the additional parameter λ. Note that here λ is not an adjustable parameter;
rather, one fixes its value and fits µ and θ. Note also that it is up to the analyst to decide
how the likelihood will change with luminosity; in some cases there could be terms where the
scaling is not entirely obvious and some assumptions must be introduced.

For each choice of λ one can carry out the full fit and thus determine σtot(λ). One can then
define what we mean by a “statistical error” as the component of σtot that scales inversely
as the square root of the luminosity. That is, we can make the approximate ansatz

σtot(λ) =

√

σ2
stat

λ
+ σ2

sys , (5)

and if we have values of σtot(λ) determined at several values of λ (0.5, 1., 1.5,. . . ) then these
can be used to fit σstat and σsys.

More specifically, suppose we plot σ2
tot versus λ

−1; this should be a straight line with slope
σ2
stat and intercept σ2

sys. It is doubtful that the full dependence will be linear, but we can
make this approximation in the neighborhood of λ = 1 and use this to define σstat and σsys.
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