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Ideas on Theory Errors (summary of several conversations
with Frank Krauss, Frank Tackmann and the HComb Group)

Starting from conversations at the recent Higgs Hunting conference I wanted to write
down some ideas on how theoretical uncertainties could be better treated in our analyses.

Suppose we measure some set of numbers y and we have a prediction for the probability
distribution P (y) from some parametric model. To be concrete assume there is a parameter
of interest µ, which could be the signal strength parameter, and a vector θ of nuisance
parameters that may include things like αs, QCD renormalization scale, factorization scale,
parton parameters, etc. In principle one can use this prediction to compare with theory using
a likelihood function to test different values of µ,

L(µ,θ) = P (y|µ,θ) .

The main idea we started discussing is that for the set of parameters we have currently at
our disposal in the prediction (αs, µR, µF, etc.) there is no point in this parameter space for
which the prediction is “correct”.1 If the parametrization does not include a point that is close
to being correct, then any inference about the parameter of interest (discovery significance,
parameter estimates) is also incorrect.

A classic example of this kind of situation occurred in estimates of αs using event-shape
variables at PETRA and (early) LEP. Fits were carried out of both αs and the renormalization
scale µR using the O(α2

s ) prediction without leading-log corrections. This resulted in values
of µR that were far below the energy scale of the reaction and in addition the fitted value of
αs(MZ) was significantly lower than what was found from other measurements (will find a
good reference for this . . . ). The point is that because of missing higher-order terms in the
prediction, there was no point in the (αs, µR) parameter space for which the prediction was
correct.

There may be a similar situation in Higgs Physics due to preference of low αs values from
parton fits from DIS (this was emphasized in the talk by R.Boughezal at Higgs Hunting, p.
23).

If no point in the model’s parameter space reflects the true prediction, one can simply
introduce additional nuisance parameters into the model,

L(µ,θ) → L(µ,θ,ν) .

Now hopefully for some point in the enlarged parameter space the model’s prediction is
“true”, in the sense that the distance by some measure between the model’s prediction at its
optimal point and the true prediction can be neglected.

At this point there is no longer any systematic uncertainty to deal with. However, because
of the correlations between the estimators of all of the parameters, the sensitivity of the

1“Correct” here only means it is the true prediction of the theory, e.g., if one could somehow compute to

all orders. Whether the theory itself is true is of course a different question.
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analysis to the parameter of interest µ will decrease, and will manifest itself, e.g., as an
increase in the variance of the estimator µ̂. This is the desired effect of the added nuisance
parameters. The systematic error from the incorrect model has been converted into an
increased statistical error from a correct one.

The key ingredient of an improved parametrisation is needed for both Bayesian and Fre-
quentist analyses. In a Bayesian context, one simply assigns a prior pdf πν(ν) to the nuisance
parameters. Bayes’ theorem then relates the posterior pdf to the likelihood and prior,

p(µ,θ,ν|y) ∝ P (y|µ,θ,ν)π(µ,θ)πν(ν) ,

and one then marginalizes p(µ,θ,ν|y) over the nuisance parameters to find the posterior pdf
for the parameter of interest.

In the Frequentist approach, one can treat the nominal value (best guess?) ν̃ for each
nuisance parameter ν as a measured quantity, e.g., a Gaussian:

ν̃ ∼ Gauss(ν, σν) .

Here the notation with a tilde is used to indicate that formally this is a random variable,
treated on the same footing as a measured quantity. One may be tempted to call this ν̂,
but the hat is used in the profile likelihood ratio later with a different meaning, namely, the
maximum-likelihood estimator for ν, so we take ν̃ here for the “measured” value.2 In some
cases ν̃ may really be a measurement; in others it is merely a nominal value but from the
standpoint of the statistical method it is treated like a measurement.

The set of measured quantities now consists of the main measurements y and the “control
measurements” ν̃ that constrain the nuisance parameters ν. Therefore the likelihood becomes

L(µ,θ,ν) = P (y|µ,θ,ν)P (ν̃|ν) .

Values of the parameter of interest µ are tested using the profile likelihood ratio as usual:

λ(µ) =
L(µ,

ˆ̂
θ, ˆ̂ν)

L(µ̂, θ̂, ν̂)
.

The main point is that to carry out either the Bayesian or Frequentist analysis one must
start by parametrizing the prediction in a way that has enough nuisance parameters and
thus enough “flexibility” to be correct for some point in its parameter space. From there the
analysis task is in effect reduced to a solved problem.

The Gaussian Ansatz for ν̃ was used above only as an example. It could be motivated,
e.g., by the Central Limit Theorem if one thought that the deviation of ν̃ from its true value
was due to a sum of a large number of contributions. On the other hand, if the deviation of ν̃
from ν was better modeled as the product of a large number of factors, then ln ν̃ differs from
ln ν by a larger number of additive terms and so the Central Limit Theorem would say that
ln ν follows a Gaussian, i.e., ν̃ should be modeled by a log-normal distribution. Of course if
the measured (nominal) values of the nuisance parameters are correlated then this must be
taken into account in the model.

2Some people call the measured value ν0, but to my eye this looks like a constant, not a measured value.
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The main question to address, therefore, is how to insert the additional parameters into
a model. Suppose one were simply trying to predict a single observable R, which depends on
αs, and by comparing to a measured value R̃ we want to estimate αs (here, our parameter of
interest). To do this we would write down the likelihood function,

L(αs) = P (R̃|αs) ,

which could be e.g. a Gaussian centred about the predicted value of R.

Suppose prediction for R is known to 2nd order, i.e.,

R(αs) = a0 + a1αs + a2α
2

s .

In using this formula, we would be guessing that the unknown coefficients a3, a4, . . . are best
approximated as zero. Most probably this is not the case, but based on experience with the
calculations of a0, a1 and a2 we may be able to guess something about how big a3 (or all of
the rest of the terms) could be (maybe using Padé approximants?). So one way would be to
assign an uncertainty σ3 to the coefficient a3 and treat our nominal value ã3 as a measured
quantity (our “observed” value of ã3 is of course 0). The likelihood then becomes

L(αs, a3) = P (R̃|αs, a3)P (ã3|a3) ,

where P (ã3|a3) could be, e.g., a Gaussian for ã3 centred about a3 with a standard deviation
of some given σ3, or more likely something with longer tails like a Student’s t distribution.

If we are not dealing with a single measured number R but rather a distribution, say,
dR/dx where x is some kinematic variable, then the missing term is not a single number but
rather a function, say, a3(x). Here one could say that the unknown function (called below
u(x) for “unknown”) has an expansion in some basis functions of the form

u(x) =
∑

n

bnϕn(x) .

Here the functions ϕn could be functions that have increasing structure (frequency, wob-
bliness, . . . ) for increasing n. So on the basis of some understanding of the missing terms
one may believe that high-n components are highly suppressed, i.e., that u(x) should be
relatively smooth. If x lives on a closed interval one could take, e.g., Bernstein polynomials
or some other convenient basis function. So here some minimal set of expansion coefficients
bn become the additional nuisance parameters.

FK’s idea to test this procedure is to begin with an example where we know already
the higher-order correction (say, 3rd order in the example above). Then various games for
estimating the uncertainty using guesses for the missing part can be checked against the
known higher order term.

FT’s idea was to exploit the fact that some higher-order corrections give a function that
passes through zero, and the uncertainty is in effect a question of where the function passes
through zero. Here one could simply parametrize a smooth function that passes through zero
at a given point and treat that point as the nuisance parameter.
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