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Systematic uncertainties in unfolding

1 Introduction

Consider the basic unfolding problem where one observes ni events, i = 1, . . . , N , in N bins
of a histogram. Suppose these are assumed to be independent and to each follow a Poisson
distribution with expectation value E[ni] ≡ νi given by

νi =
M∑
j=1

Rijµj + βi , (1)

where µj , j = 1, . . . ,M , are the expected numbers of entries in the “true” histogram and βi
is the expected contribution from background processes. For the moment, suppose that the
uncertainty in the βi can be neglected and we will focus on the uncertainty in the response
matrix,

Rij = P (event found in bin i| true value in bin j) , (2)

defined here to include all effects of acceptance, efficiency, migration, etc.

The goal is to estimate the parameters µ = (µ1, . . . , µM ). Using the Poisson model for
the ni, the likelihood function is

L(µ) =
N∏
i=1

νni
i

ni!
e−νi , (3)

where the νi depend on the parameters µ through Eq. (1). Maximizing L(µ) gives the
maximum-likelihood (ML) estimators or alternatively one may maximize a linear combination
of lnL(µ) and a regularization function to obtain regularized estimators. A more complete
description of the formalism and notation of unfolding is given in Ch. 11 of Ref. [1].

2 Including nuisance parameters in the model

Suppose the response matrix R is not fully known but can be expressed as a function of some
vector of nuisance parameters θ = (θ1, . . . , θK). The likelihood function thus includes the
nuisance parameters θ through the response matrix. The correlations between the estimators
of the parameters of interest µ and the nuisance parameters θ have the usual effect of inflating
the statistical errors on the µ̂i, and in this way the systematic uncertainties are incorporated
into the final result.

Several approaches can be used to obtain the full likelihood function L(µ,θ). Suppose
the θk are defined such that θk = 0 gives the nominal response matrix, and a variation of θk
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of ±σuk
thus gives a one-sigma variation of R. That is, the best estimates uk of the θk are

treated as measured quantities with “observed” values uk = 0. Suppose here we take the uk
to be independent and Gaussian distributed with means θk and standard deviations σuk

. In
this way the likelihood function becomes

L(µ,θ) =
N∏
i=1

[
νni
i

ni!
e−νi

] K∏
k=1

[
1

σuk

φ

(
uk − θk
σuk

)]
, (4)

where νi is now a function of both µ and θ, and φ is the standard (zero mean and unit
variance) Gaussian pdf. To find the ML estimators of the µi, the likelihood (4) is maximized
using the ni from the observed histogram and ui = 0.

Usually the response matrixRij(θ) is not available as a parametric function of the nuisance
parameters. Instead one has a nominal Monte Carlo model that can be used to determine

a matrix R
(0)
ij , and then one can make some number of variations to this model either by

generating new Monte Carlo data or by reweighting the events from the nominal sample.
Suppose there are 2K variations corresponding to changes of plus and minus one standard
deviation of each nuisance parameter. In principle each MC sample can be used to determine

a response matrix R
(l)
ij with l = 0, . . . , 2K, and from these one can parametrize the matrix

Rij(θ) using Machine-Learning algorithms such as neural networks (see, e.g., [2]).

The Machine-Learning approach to parametrising the response matrix poses many chal-
lenges and therefore in practice one may consider simpler procedures that entail certain
approximations. If the variations of the response matrix within the one-sigma range of the
θk are not too nonlinear we can expand R(θ) to first order in a Taylor series about θ = 0
and use this in the expression for νi(µ,θ) to obtain

νi(µ,θ) ≈
M∑
j=1

(
Rij(0) +

K∑
k=1

∂Rij

∂θk

∣∣∣∣
θ=0

θk

)
µj + βi

= νi(µ, 0) +
K∑
k=1

 M∑
j=1

∂Rij

∂θk

∣∣∣∣
θ=0

µj

 θk

= νi(µ, 0) +
K∑
k=1

δν
(k)
i (µ)

θk
σuk

, (5)

where we have defined

δν
(k)
i (µ) = σuk

M∑
j=1

∂Rij

∂θk

∣∣∣∣
θ=0

µj . (6)

Using this first-order approximation, the likelihood function becomes

L(µ,θ) =
N∏
i=1

[
(νi(µ, 0) + ∆νi(µ,θ))

ni

ni!
e−(νi(µ,0)+∆νi(µ,θ))

] K∏
k=1

[
1

σuk

φ

(
uk − θk
σuk

)]
, (7)

where
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∆νi(µ,θ) =
K∑
k=1

δν
(k)
i (µ)

θk
σuk

. (8)

To find the δνi(µ) from Eq. (6), we need to differentiate the response matrix with respect
to the nuisance parameters; this requires R(θ), and we will suppose that this is not readily
available. An approximate procedure is to use the 2K+1 Monte Carlo models (nominal plus
2K variations) to estimate the corresponding expectation values of the observed distribution,

which we will write as ν
(l)
i , l = 0, . . . , 2K. It is important to note that these numbers are

constants not depending on µ or θ, in contrast to the νi(µ,θ) from Eq. (1). In practice the
values are estimates from finite MC samples and thus have statistical errors; here we will
assume that these errors can be neglected.

The approximation considered here is to replace the terms δν
(k)
i (µ) in Eq. (8) by corre-

sponding terms estimated from the nominal Monte Carlo model and the 2K variations. To
do this we can define

δν̃
(k)
i (θ) =


ν
(k,+)
i − ν

(0)
i θk ≥ 0 ,

ν
(0)
i − ν

(k,−)
i θk < 0 ,

(9)

where ν
(k,+)
i and ν

(k,−)
i refer to the values of ν

(l)
i found from the modified Monte Carlo samples

that correspond to plus and minus one-sigma variations of the nuisance parameter θk and

ν
(0)
i is from the nominal model. The terms δν̃

(k)
i (θ) are then used to define

∆ν̃i(θ) =
K∑
k=1

δν̃
(k)
i (θ)

θk
σuk

. (10)

By using these ∆ν̃i(θ) in the likelihood function (7) instead of ∆νi(µ,θ), one no longer needs
to find the response matrix explicitly in terms of the nuisance parameters. As it is much

easier to determine the folded distributions ν
(l)
i from the MC samples corresponding to the

different variations, than it is to find the response matrices R
(l)
ij , this method represents an

important simplification.

There are two approximations used in this approach: First, the variation of the response
matrix R is assumed to be sufficiently linear in the nuisance parameters so that the first-order
expansion is justified. Second, we are ignoring the dependence of ∆νi(θ) on the parameters
µ, which would be present were one to use the definitions of ∆νi through Eqs. (6) and (8).
The validity of both of these approximations should be checked when this method is used.

The method can be extended easily to cover uncertainties in the expected numbers of
background events βi. Suppose these can be expressed in terms of a set of nuisance parameters
as βi(θ). As above, suppose the best estimates of the nuisance parameters are uk = 0, and
the uk are treated as Gaussian distributed random variables with standard deviations σuk

.
Then these parameters will enter into the likelihood function through the βi and one also
includes the corresponding Gaussian terms for the uk as in Eq. (4).

If the background predictions are available from a nominal model β
(0)
i and also from some

variations β
(k,+)
i and β

(k,−)
i corresponding to plus and minus one standard deviation of θk,

then these can be used in the same way as for the terms ν
(k,+)
i and ν

(k,−)
i in Eq. (9) to

compute the corresponding δν̃
(k)
i . These can then be included in the likelihood through their

contribution to ∆ν̃i in Eq. (10) together with the corresponding Gaussian terms for the uk.
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3 Propagating the systematic uncertainties

Once the likelihood function L(µ,θ) is available with its full dependence on the parameters
of interest µ and the nuisance parameters θ, there are several ways to obtain parameter
estimates and their uncertainties.

The usual procedure in the frequentist approach is to maximize the likelihood with respect
to all of the parameters, yielding estimators µ̂ and θ̂. Letting λ = (µ1, . . . , µM , θ1, . . . , θK)
be the M +K-dimensional vector of all the parameters, the inverse of the covariance matrix
Uij = cov[λ̂i, λ̂j ] can be estimated from the Hessian matrix

U−1
ij = − ∂2 lnL

∂λi ∂λj

∣∣∣∣∣
λ̂

. (11)

The covariance matrix for µ̂ is obtained by first inverting U−1 and then extracting the
submatrix corresponding to the parameters of interest.

In the case of regularized unfolding, however, the estimators are constructed by maxim-
imizing a linear combination of the log-likelihood and a regularization function S(µ),

Φ(µ,θ) = lnL(µ,θ) + τS(µ) , (12)

where τ is the regularization parameter. In this case it is no longer true that the inverse
Hessian of lnL(µ) or Φ(µ) gives the covariance matrix of the parameters. Approximate
formulae are given for this case in Ref. [3] and Ref. [1] Sec. 11.6, but the approximations used
are not valid for very strong or very weak regularization.

A more precise determination of the covariance matrix of the estimators can be obtained
using a toy Monte Carlo simulation. The two approaches below should be equivalent, but
the second method with Bayesian treatment of the systematics should be much easier to
implement.

3.1 Covariance with fully frequentist treatment

Suppose the estimators are constructed, e.g., by maximizing Φ(µ,θ) or by some other method.
In any case, one finds a set of estimators µ̂(n,u) that are functions of the data, which include
both the primary measurements n as well as the control measurements u. The covariances
of the estimators are

cov[µ̂i, µ̂j ] = E [µ̂iµ̂j ]− E [µ̂i]E [µ̂j ] . (13)

If the expectation values are taken only with respect to the primary data n while holding
the control measurements fixed to their nominal values, then one obtains the statistical
covariance matrix, e.g., using

En[µ̂i] =
∑
n

µ̂i(n,u)P (n|µ,u) . (14)

Or if one fixes n to the observed values and computes the expectation value with respect to
the control measurements u, then one finds the systematic covariances,
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Eu[µ̂i] =

∫
µ̂i(n,u)f(u|θ) du . (15)

Or the expectation values can be taken with respect to both n and u to obtain the full
covariance,

En,u[µ̂i] =
∑
n

∫
µ̂i(n,u)P (n|µ,θ) f(u|θ) du . (16)

In all cases the expectation values can be found by Monte Carlo sampling of n and/or u as
appropriate and computing the corresponding averages. In this way the covariance matrix is
a function of the assumed values of µ and θ used to generate the MC data. The estimated
covariance matrix is found simply by using the estimates or some other nominal values of µ
and θ for these.

The basic steps to find the systematic covariance matrix with the frequentist procedure
are therefore

1. Compute νi(µ,θ), i = 1, . . . , N with some nominal values of µ and θ. Treat these νi
values as an Asimov data set, i.e., with no Poisson fluctuations, corresponding to the
parameter point (µ,θ).

2. Sample u ∼ f(u|θ).

3. Apply the unfolding algorithm with the nuisance parameters θ set equal to u in the
likelihood to find a set of estimates µ̂. Record the values in an n-tuple.

4. Repeat the procedure many times and compute the covariance by estimating the ex-
pectation values below with the corresponding averages:

cov[µ̂i, µ̂j ] = E [µ̂iµ̂j ]− E [µ̂i]E [µ̂j ] . (17)

This will give the systematic covariance matrix. Alternatively, one can sample toy data
n ∼ Poisson(ν) as well as sampling u ∼ f(u|θ); in this case one obtains the full covariance
matrix.

3.2 Covariance using Bayesian treatment of systematics

The Bayesian treatment of the systematic uncertainties should lead to results that are either
identical or similar to the frequentist method above. Here the control measurements u are
treated as fixed and one computes the expectation values with respect to θ using the prior

π(θ) ∝ f(u|θ)π0(θ) . (18)

Here the ur-prior π0(θ) reflects the prior before the control measurements, usually taken as
a constant. With a constant ur-prior and a Gaussian for f(u|θ) one obtains

π(θ) =
K∏
k=1

[
1

σuk

φ

(
uk − θk
σuk

)]
(19)

The basic steps are therefore
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1. Sample θ ∼ π(θ).

2. Compute νi(θ), i = 1, . . . , N with the sampled value of θ

3. Treat the ν values as an Asimov data set, i.e., with no Poisson fluctuations, correspond-
ing to the nuisance parameter point θ.

4. Apply the unfolding algorithm using the nominal response matrix R to find a set of
estimates µ̂. Record the values in an n-tuple.

5. Repeat the procedure many times and compute the covariance by estimating the ex-
pectation values below with the corresponding averages:

cov[µ̂i, µ̂j ] = E [µ̂iµ̂j ]− E [µ̂i]E [µ̂j ] . (20)

The covariances obtained by this procedure reflect only the systematic uncertainties
through the prior π(θ), not the statistical uncertainties. If in step (3) one were to gen-
erate a data set using n ∼ Poisson(ν) then the covariances include both the statistical and
systematic uncertainties.
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