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Outline 
Lecture 1:  Introduction and basic formalism 

       Probability, statistical tests, confidence intervals. 

Lecture 2:  Tests based on likelihood ratios 
       Systematic uncertainties (nuisance parameters) 

                  Limits for Poisson mean 

Lecture 3:  More on discovery and limits 
                  Upper vs. unified limits (F-C) 
                  Spurious exclusion, CLs, PCL 
                  Look-elsewhere effect 
                  Why 5σ for discovery? 
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Quick review of probablility 
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations. 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’. 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, interpretation of probability extended to 
degree of belief (subjective probability).  Use this for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayesian methods can provide more natural treatment of  non- 
repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 

No golden rule for priors (“if-then” character of Bayes’ thm.) 



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 1 6 

Hypotheses 
A hypothesis H specifies the probability for the data, i.e., the  
outcome of the observation, here symbolically: x. 

 x could be uni-/multivariate, continuous or discrete. 

 E.g. write x ~ f (x|H). 

 x could represent e.g. observation of a single particle,  
 a single event, or an entire “experiment”. 

Possible values of x form the sample space S (or “data space”). 

Simple (or “point”) hypothesis:  f (x|H) completely specified. 

Composite hypothesis:  H contains unspecified parameter(s). 

The probability for x given H is also called the likelihood of 
the hypothesis, written L(x|H). 
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Definition of a test 
Consider e.g. a simple hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region W of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ W | H0 ) ≤ α 

If x is observed in the critical region, reject H0. 

α is called the size or significance level of the test. 

Critical region also called “rejection” region; complement is 
acceptance region. 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α	


But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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Physics context of a statistical test 
Event Selection:  the event types in question are both known to exist. 

 Example:  separation of different particle types (electron vs muon) 
 or known event types (ttbar vs QCD multijet). 
 Use the selected sample for further study. 

 
Search for New Physics:  the null hypothesis H0 means Standard Model 
events, and the alternative H1 means "events of a type whose existence  
is not yet established" (to establish or exclude the signal model is the goal 
of the analysis). 

 Many subtle issues here, mainly related to the high standard 
 of proof required to establish presence of a new phenomenon.   

The optimal statistical test  for a search is closely related to that used for  
event selection. 
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Suppose we want to discover this… 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 

SUSY event (ATLAS simulation): 
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But we know we’ll have lots of this… 

SM event also has high   
pT jets and muons, and  
missing transverse energy. 

→ can easily mimic a SUSY  
event and thus constitutes a 
background. 

ttbar event (ATLAS simulation) 
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Example of a multivariate statistical test 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pt of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 
Often call H0 the background hypothesis (e.g. SM events); 
H1, H2, ... are possible signal hypotheses. 
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Defining a multivariate critical region 
Each event is a point in x-space; critical region is now defined 
by a ‘decision boundary’ in this space.   

What kind of decision boundary is best? 

Cuts? Linear? Nonlinear? 
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Multivariate methods 
Many new (and some old) methods for finding decision boundary: 

 Fisher discriminant 
 Neural networks 
 Kernel density methods 
 Support Vector Machines 
 Decision trees 
  Boosting 
  Bagging   

New software for HEP, e.g., 
TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 

For more see e.g. references at end of this lecture. 

For the rest of these lectures, I will focus on other aspects of  
tests, e.g., discovery significance and exclusion limits. 
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Test statistics 
The decision boundary can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Significance level and power 
Probability to reject H0 if it is true  
(type-I error): 

(significance level) 

Probability to accept H0 if H1 is  
true (type-II error): 

(1 - β = power) 
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Signal/background efficiency 
Probability to reject background hypothesis for  
background event (background efficiency): 

Probability to accept a signal event 
as signal (signal efficiency): 
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Purity of event selection 
Suppose only one background type b; overall fractions of signal 
and background events are πs and πb (prior probabilities). 

Suppose we select signal events with t > tcut.  What is the 
‘purity’ of our selected sample? 

Here purity means the probability to be signal given that 
the event was accepted.  Using Bayes’ theorem we find: 

So the purity depends on the prior probabilities as well as on the 
signal and background efficiencies. 
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Constructing a test statistic 
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test 
H0, (background) versus H1, (signal) (highest εs for a given εb) 
choose the critical (rejection) region such that 

where c is a constant which determines  the power. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
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Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

(Not unique!) 
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p-values 

where π (H) is the prior probability for H. 

Express level of agreement between data and H with p-value: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 1 



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 1 25 

The significance of an observed signal 
Suppose we observe n events; these can consist of: 

nb events from known processes (background) 
ns events from a new process (signal) 

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb 
is also Poisson, mean = s + b: 

Suppose b = 0.5, and we observe nobs = 5.  Should we claim 
evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Distribution of  the p-value 
The p-value is a function of the data, and is thus itself a random 
variable with a given distribution.  Suppose the p-value of H is  
found from a test statistic t(x) as 
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The pdf of pH under assumption of H is 

In general for continuous data,  under  
assumption of H, pH ~ Uniform[0,1] 
and is concentrated toward zero for  
some (broad) class of alternatives. pH 

g(pH|H) 

0 1 

g(pH|H′) 



G. Cowan  page 27 

Using a p-value to define test of H0 

So the probability to find the p-value of H0, p0, less than α is 
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We started by defining critical region in the original data 
space (x), then reformulated this in terms of a scalar test  
statistic t(x). 

We can take this one step further and define the critical region  
of a test of H0 with size α as the set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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Interval estimation — introduction 

Often use +/- the estimated standard deviation of the estimator. 
In some cases, however, this is not adequate: 

 estimate near a physical boundary,  
 e.g., an observed event rate consistent with zero. 

In addition to a ‘point estimate’ of a parameter we should report  
an interval reflecting its statistical uncertainty.   

Desirable properties of such an interval may include: 
 communicate objectively the result of the experiment; 
 have a given probability of containing the true parameter; 
 provide information needed to draw conclusions about 
 the parameter possibly incorporating stated prior beliefs. 

We will look briefly at Frequentist and Bayesian intervals. 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ γ  
 for a prespecified γ, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size γ  (confidence level is 1 - γ ). 

The interval will cover the true value of θ with probability ≥ 1 - γ. 

Equivalent to confidence belt construction; confidence belt is  
acceptance region of a test. 
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Relation between confidence interval and p-value 

Equivalently we can consider a significance test for each 
hypothesized value of θ, resulting in a p-value, pθ..   
 

 If pθ < γ, then we reject θ.  
 
The confidence interval at CL = 1 – γ consists of those values of  
θ  that are not rejected. 
 
E.g. an upper limit on θ is the greatest value for which pθ ≥ γ.  
 

 In practice find by setting pθ = γ and solve for θ. 

G. Cowan  
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Test statistic for p-value of a parameter 
One often obtains the p-value of a hypothesized value of a  
parameter θ using a test statistic qθ(x), such that large values of qθ  
correspond to increasing incompatibility between the data (x)  
and hypothesis (θ). 

The data result in a value qθ,obs. 

The p-value of the hypothesized θ is therefore 

So to find this we need to know the distribution of qθ 
under assumption of θ. 

For some problems we can write this down in closed form (at 
least approximately); other times need Monte Carlo. 
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Nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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Distribution of qθ in case of nuisance parameters 
The p-value of θ is now 

But what values of ν to use for f (qθ|θ, ν)? 

Fundamentally we want to reject θ only if pθ < α for all ν. 

 → “exact” confidence interval 

We will see that for certain statistics (based on the profile 
likelihood ratio), the distribution f (qθ|θ, ν) becomes independent 
of the nuisance parameters in the large-sample limit. 

But in general for finite data samples this is not true; may be 
unable to reject some θ values if ν  is assumed equal to some value 
that is strongly disfavoured by the data (resulting interval for θ 
“overcovers”). 
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Profile construction (“hybrid resampling”) 

Compromise procedure is to reject θ if pθ < α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ: 

“double hat” notation means 
value of parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (!, ˆ̂"(!)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial). 
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“Hybrid frequentist-Bayesian” method 

Alternatively, suppose uncertainty in ν is characterized by 
a Bayesian prior π(ν). 

Can use the  marginal likelihood to model the data:  

This does not represent what the data distribution would 
be if we “really” repeated the experiment, since then ν would 
not change. 

But the procedure has the desired effect.  The marginal likelihood 
effectively builds the uncertainty due to ν into the model. 

Use this now to compute (frequentist) p-values → result 
has hybrid “frequentist-Bayesian” character. 
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The “ur-prior” behind the hybrid method 

But where did π(ν) come frome?  Presumably at some earlier 
point there was a measurement of some data y with 
likelihood L(y|ν), which was used in Bayes’theorem, 

and this “posterior” was subsequently used for π(ν) for the 
next part of the analysis. 

But it depends on an “ur-prior” π0(ν), which still has to be 
chosen somehow (perhaps “flat-ish”). 

But once this is combined to form the marginal likelihood, the 
origin of the knowledge of ν may be forgotten, and the model 
is regarded as only describing the data outcome x. 
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The (pure) frequentist equivalent 
In a purely frequentist analysis, one would regard both 
x and y as part of the data, and write down the full likelihood: 

“Repetition of the experiment” here means generating both 
x and y according to the distribution above. 

In many cases, the end result from the hybrid and pure 
frequentist methods are found to be very similar (cf. Conway, 
Roever, PHYSTAT 2011). 
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Wrapping up lecture 1 
General framework of a statistical test: 

 Divide data spaced into two regions; depending on 
 where data are then observed, accept or reject hypothesis.  

Significance tests (also for goodness-of-fit): 
 p-value = probability to see level of incompatibility 
 between data and hypothesis equal to or greater than 
 level found with the actual data. 

Confidence intervals 
 Set of parameter values not rejected in a test of size 
 α gives confidence interval at 1 – α CL. 

Systematic uncertainties ↔ nuisance parameters 
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Extra slides 
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Proof of Neyman-Pearson lemma 
We want to determine the critical region W that maximizes the  
power 

subject to the constraint 

First, include in W all points where P(x|H0) = 0, as they contribute 
nothing to the size, but potentially increase the power. 
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Proof of Neyman-Pearson lemma (2) 

For P(x|H0) ≠ 0 we can write the power as 

The ratio of 1 – β to α is therefore 

which is the average of the likelihood ratio P(x|H1) / P(x|H0)  over 
the critical region W, assuming H0. 

(1 – β) / α  is thus maximized if W contains the part of the sample 
space with the largest values of the likelihood ratio. 
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p-value example:  testing whether a coin is ‘fair’ 

i.e. p = 0.0026 is the probability of obtaining such a bizarre 
result (or more so) ‘by chance’, under the assumption of H. 

Probability to observe n heads in N coin tosses is binomial: 

Hypothesis H:  the coin is fair (p = 0.5). 

Suppose we toss the coin N = 20 times and get n = 17 heads. 

Region of data space with equal or lesser compatibility with  
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding 
up the probabilities for these values gives: 
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Frequentist confidence intervals 
Consider an estimator for a parameter θ and an estimate 

We also need for all possible θ its sampling distribution 

Specify upper and lower tail probabilities, e.g., α = 0.05, β = 0.05, 
then find functions uα(θ) and vβ(θ) such that: 
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Confidence interval from the confidence belt 

Find points where observed  
estimate intersects the  
confidence belt.   

The region between uα(θ) and vβ(θ) is called the confidence belt. 

This gives the confidence interval [a, b] 

Confidence level = 1 - α - β = probability for the interval to 
cover true value of the parameter (holds for any possible true θ). 



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 1 45 

Meaning of a confidence interval 
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Quick review of parameter estimation 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Software for multivariate analysis 


