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Outline 
Lecture 1:  Introduction and basic formalism 

       Probability, statistical tests, confidence intervals. 

Lecture 2:  Tests based on likelihood ratios 
       Systematic uncertainties (nuisance parameters) 

                  Limits for Poisson mean 

Lecture 3:  More on discovery and limits 
                  Upper vs. unified limits (F-C) 
                  Spurious exclusion, CLs, PCL 
                  Look-elsewhere effect 
                  Why 5σ for discovery? 
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A simple example 
For each event we measure two variables, x = (x1, x2). 

Suppose that for background events (hypothesis H0),  

and for a certain signal model (hypothesis H1) they follow 

where x1, x2  ≥ 0 and C is a normalization constant. 
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Likelihood ratio as test statistic 
In a real-world problem we usually wouldn’t have the pdfs  
f(x|H0) and f(x|H1), so we wouldn’t be able to evaluate the 
likelihood ratio  

for a given observed x, hence 
 the need for multivariate  
methods to approximate this  
with some other function. 

But in this example we can  
find contours of constant  
likelihood ratio such as: 
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Event selection using the LR 
Using Monte Carlo, we can find the distribution of the likelihood 
ratio or equivalently of 

signal (H1) 

background 
 (H0) 

From the Neyman-Pearson lemma 
we know that by cutting on this 
variable we would select a signal 
sample with the highest signal 
efficiency (test power) for a given 
background efficiency. 
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Search for the signal process 
But what if the signal process is not known to exist and we want 
to search for it.   The relevant hypotheses are therefore 

 H0:  all events are of the background type 
 H1:  the events are a mixture of signal and background 

Rejecting H0 with Z > 5 constitutes “discovering” new physics. 

Suppose that for a given integrated luminosity, the expected number 
of signal events is s, and for background b. 

The observed number of events n will follow a Poisson distribution: 
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Likelihoods for full experiment 
We observe n events, and thus measure n instances of x = (x1, x2).  

The likelihood function for the entire experiment assuming 
the background-only hypothesis (H0) is 

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to 
be signal or background, respectively. 



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 2 8 

Likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term –s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 
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Distribution of Q 

Take e.g. b = 100, s = 20. 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 

Suppose in real experiment 
Q is observed here. 
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Systematic uncertainties 
Up to now we assumed all parameters were known exactly. 

 In practice they have some (systematic) uncertainty. 

Suppose e.g. uncertainty in expected number of background events 
b is characterized by a (Bayesian) pdf π(b). 

Maybe take a Gaussian, i.e., 

where b0 is the nominal (measured) value and σb is the estimated 
uncertainty. 

 In fact for many systematics a Gaussian pdf is hard to  
 defend – more on this later. 
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Distribution of Q with systematics 
To get the desired p-values we need the pdf f (Q), but 
this depends on b, which we don’t know exactly.   

But we can obtain the prior predictive (marginal) model: 

With Monte Carlo, sample b from π(b), then use this to generate  
Q from f (Q|b), i.e., a new value of b is used to generate the data 
for every simulation of the experiment. 

This broadens the distributions of Q and thus increases the  
p-value (decreases significance Z) for a given Qobs. 
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Distribution of Q with systematics (2) 
For s = 20, b0 = 100, σb = 20 this gives 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 
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Using the likelihood ratio L(s)/L(s) ˆ 

Instead of the likelihood ratio Ls+b/Lb, suppose we use as a test 
statistic  

Intuitively this is a measure of the level of agreement between  
the data and the hypothesized value of s. 

 low λ:  poor agreement 
 high λ : better agreement 
 0 ≤ λ ≤ 1 

maximizes L(s) 
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L(s)/L(s) for counting experiment ˆ 
Consider an experiment where we only count n events with 
n ~ Poisson(s + b).  Then                 . 

To establish discovery of signal we test the hypothesis s = 0 using 

whereas previously we had used 

which is monotonic in n and thus equivalent to using  n as 
the test statistic. 
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L(s)/L(s) for counting experiment (2) ˆ 
But if we only consider the possibility of signal being present 
when n > b, then in this range λ(0) is also monotonic in n, 
so both likelihood ratios lead to the same test. 

b 
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L(s)/L(s) for general experiment ˆ 
If we do not simply count events but also measure for each some  
set of numbers, then the two likelihood ratios do not necessarily  
give equivalent tests, but in practice should be very close. 

λ(s) has the important advantage that for a sufficiently large event 
sample, its distribution approaches a well defined form (Wilks’ 
Theorem). 

 In practice the approach to the asymptotic form is rapid and  
 one obtains a good approximation even for relatively small  
 data samples (but need to check with MC). 

This remains true even when we have adjustable nuisance  
parameters in the problem, i.e., parameters that are needed for 
a correct description of the data but are otherwise not of 
interest (key to dealing with systematic uncertainties). 
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Large-sample approximations for prototype  
analysis using profile likelihood ratio 

Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
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signal 

where 

background 

strength parameter 

Assume the ni are Poisson distributed with expectation values 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
 
Assume the mi are Poisson distributed with expectation values 
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nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 
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maximizes L for 
Specified µ	



maximize L	



The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 
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i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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p-value for discovery 
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Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 
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So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  



23 

Test statistic for upper limits 

For purposes of setting an upper limit on µ one may use 
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Note for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 

where 
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Alternative test statistic for upper limits 
Assume physical signal model has µ > 0, therefore if estimator 
for µ comes out negative, the closest physical model has µ = 0. 

Therefore could also measure level of discrepancy between data  
and hypothesized µ with 
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Performance not identical to but very close to qµ (of previous slide). 
qµ  is simpler in important ways:  asymptotic distribution is  
independent of nuisance parameters. 
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Wald approximation for profile likelihood ratio 
To find p-values, we need: 

For median significance under alternative, need: 
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Use approximation due to Wald (1943) 

sample size 
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Noncentral chi-square for -2lnλ(µ) 
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If we can neglect the O(1/√N) term, -2lnλ(µ) follows a 
 noncentral chi-square distribution for one degree of freedom 
with noncentrality parameter 

As a special case, if µ′ = µ then Λ = 0 and -2lnλ(µ) follows 
a chi-square distribution for one degree of freedom (Wilks). 
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The Asimov data set 
To estimate median value of -2lnλ(µ), consider special data set 
where all statistical fluctuations suppressed and ni, mi are replaced 
by their expectation values (the “Asimov” data set): 
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Asimov value of 
-2lnλ(µ) gives non- 
centrality param. Λ,	


or equivalently, σ.	
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Relation between test statistics and 	
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Distribution of q0 

Assuming the Wald approximation, we can write down the full  
distribution of q0 as 
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The special case µ′ = 0 is a “half chi-square” distribution:  
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  
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The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 
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Relation between test statistics and       	
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Assuming the Wald approximation for – 2lnλ(µ), qµ and qµ  
both have monotonic relation with µ.  

~ 

And therefore quantiles 
of qµ, qµ can be obtained 
directly from those  
οf µ (which is Gaussian). ˆ 

̃ 

~ 
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Distribution of qµ	



Similar results for qµ	
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Distribution of qµ	
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Similar results for qµ	

̃ 

̃ 
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Monte Carlo test of asymptotic formula 	
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Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ	


level (q0 = 25) already for 
b ~ 20. 
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Monte Carlo test of asymptotic formulae 	
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For very low b, asymptotic 
formula underestimates Z0. 

Then slight overshoot before 
rapidly converging to MC 
value. 

Significance from asymptotic formula, here Z0 = √q0 = 4,  
compared to MC (true) value. 
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Monte Carlo test of asymptotic formulae 	
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Asymptotic  f (q0|1)  good already for fairly small samples. 

Median[q0|1] from Asimov data set; good agreement with MC. 
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Monte Carlo test of asymptotic formulae 	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 
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Monte Carlo test of asymptotic formulae 	
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Same message for test based on qµ. 

qµ and qµ give similar tests to  
the extent that asymptotic 
formulae are valid. 

~ 

~ 



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 2 39 

Setting limits on Poisson parameter 
Consider again the case of finding n = ns + nb events where 

nb events from known processes (background) 
ns events from a new process (signal) 

are Poisson r.v.s with means s, b, and thus n = ns + nb 
is also Poisson with mean = s + b.  Assume b is known. 

Suppose we are searching for evidence of the signal process, 
but the number of events found is roughly equal to the 
expected number of background events, e.g., b = 4.6 and we  
observe nobs = 5 events. 

→  set upper limit on the parameter s. 

The evidence for the presence of signal events is not 
statistically significant, 



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 2 40 

Upper limit for Poisson parameter 
Find the hypothetical value of s such that there is a given small 
probability, say, γ = 0.05, to find as few events as we did or less: 

Solve numerically for s = sup, this gives an upper limit on s at a 
confidence level of 1-γ. 

Example:  suppose b = 0 and we find nobs = 0.  For 1-γ = 0.95, 

→ 
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Calculating Poisson parameter limits 
To solve for slo, sup, can exploit relation to χ2 distribution: 

Quantile of χ2 distribution 

For low fluctuation of n the  
formula can give negative  
result for sup;  i.e. confidence  
interval is empty. 
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Limits near a physical boundary 
Suppose e.g. b = 2.5 and we observe n = 0.   

If we choose CL = 0.9, we find from the formula for sup 

Physicist:   
 We already knew s ≥ 0 before we started; can’t use negative  
 upper limit to report result of expensive experiment! 

Statistician: 
 The interval is designed to cover the true value only 90% 
 of the time — this was clearly not one of those times. 

Not uncommon dilemma when limit of parameter is close to a  
physical boundary.  
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Expected limit for s = 0 

Physicist:  I should have used CL = 0.95 — then sup = 0.496 

Even better:  for CL = 0.917923 we get sup = 10-4 ! 

Reality check:  with b = 2.5, typical Poisson fluctuation in n is 
at least √2.5 = 1.6.  How can the limit be so low? 

Look at the mean limit for the  
no-signal hypothesis (s = 0) 
(sensitivity). 

Distribution of 95% CL limits 
with b = 2.5, s = 0. 
Mean upper limit = 4.44 
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The Bayesian approach to limits 
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from 
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Bayesian prior for Poisson parameter 
Include knowledge that s ≥0 by setting prior π(s) = 0 for s<0. 

Could try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  
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Bayesian interval with flat prior for s 
Solve numerically to find limit sup. 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as classical case (‘coincidence’).  

Otherwise Bayesian limit is 
everywhere greater than 
classical (‘conservative’). 

Never goes negative. 

Doesn’t depend on b if n = 0. 
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Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In a Subjective Bayesian analysis, using  objective priors can be an  
important part of the sensitivity analysis. 
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Priors from formal rules (cont.)  
In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  For a review see: 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
energy physics, Phys. Rev. D 82 (2010) 034002,  
arxiv:1002.1111 (Feb 2010) 
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Jeffreys’ prior 
According to Jeffreys’ rule, take prior according to 

where 

is the Fisher information matrix. 

One can show that this leads to inference that is invariant under 
a transformation of parameters. 

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson  
mean µ it is proportional to 1/√µ.  
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Jeffreys’ prior for Poisson mean 

Suppose n ~ Poisson(µ).  To find the Jeffreys’ prior for µ, 

So e.g. for µ = s + b, this means the prior π(s) ~ 1/√(s + b),   
which depends on b.  Note this is not designed as a degree of  
belief  about s. 
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Bayesian limits with uncertainty on b 
Uncertainty on b goes into the prior, e.g., 

Put this into Bayes’ theorem, 

Marginalize over the nuisance parameter b,  

Then use p(s|n) to find intervals for s with any desired  
probability content. 
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than naive 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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More on priors 
Suppose we measure n ~ Poisson(s+b), goal is to make inference 
about s. 

Suppose b is not known exactly but we have an estimate b 
with uncertainty σb. 

For Bayesian analysis, first reflex may be to write down a  
Gaussian prior for b, 

But a Gaussian could be problematic because e.g. 
 b ≥ 0, so need to truncate and renormalize; 
 tails fall off very quickly, may not reflect true uncertainty. 

ˆ 
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Gamma prior for b 
What is in fact our prior information about b?  It may be that  
we estimated b using a separate measurement (e.g., background  
control sample) with 

        m ~ Poisson(τb)              (τ = scale factor, here assume known) 

Having made the control measurement we can use Bayes’ theorem 
to get the probability for b given m, 

If we take the “original” prior π0(b) to be to be constant for b ≥ 0, 
then the posterior π(b|m), which becomes the subsequent prior  
when we measure n and infer s, is a Gamma distribution with: 

 mean =  (m + 1) /τ	


 standard dev. = √(m + 1) /τ 
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Gamma distribution 
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Frequentist approach to same problem 

In the frequentist approach we would regard both variables 

 n ~ Poisson(s+b) 
 m ~ Poisson(τb) 

as constituting the data, and thus the full likelihood function is 

Use this to construct test of s with e.g. profile likelihood ratio 

Note here that the likelihood refers to both n and m, whereas 
the likelihood used in the Bayesian calculation only modeled n. 
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Extra Slides 
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Example:  ALEPH Higgs search  
p-value  (1 – CLb) of background only hypothesis versus tested 
Higgs mass measured by ALEPH Experiment  

Possible signal? 

Phys.Lett.B565:61-75,2003.  
hep-ex/0306033 
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Example:  LEP Higgs search  
Not seen by the other LEP experiments.  Combined analysis gives  
p-value of background-only hypothesis of 0.09 for mH = 115 GeV. 

Phys.Lett.B565:61-75,2003.  
hep-ex/0306033 
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Example 2:  Shape analysis	
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Look for a Gaussian bump sitting on top of: 
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Monte Carlo test of asymptotic formulae 	
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Distributions of qµ here for µ that gave pµ = 0.05. 
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Using f(qµ|0) to get error bands	
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We are not only interested in the median [qµ|0]; we want to know 
how much statistical variation to expect from a real data set. 

But we have full f(qµ|0); we can get any desired quantiles. 
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Distribution of upper limit on µ	
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±1σ (green) and ±2σ (yellow) bands from MC; 

Vertical lines from asymptotic formulae 
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Limit on µ versus peak position (mass)	
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±1σ (green) and ±2σ (yellow) bands from asymptotic formulae; 

Points are from a single arbitrary data set. 
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Using likelihood ratio Ls+b/Lb	
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Many searches at the Tevatron have used the statistic 

likelihood of µ = 1 model (s+b) 

likelihood of µ = 0 model (bkg only) 

This can be written 
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Wald approximation for Ls+b/Lb	
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Assuming the Wald approximation, q can be written as 

i.e. q is Gaussian distributed with  mean and variance of 

To get σ2 use 2nd derivatives of lnL with Asimov data set. 
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Example with Ls+b/Lb	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
b = 20, s = 10, τ = 1. 

So even for smallish data  
sample, Wald approximation 
can be useful; no MC needed. 
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Discovery significance for n ~ Poisson(s + b) 

Consider again the case  where we observe n events , 
model as following Poisson distribution with mean s + b 
(assume b is known). 
 
1)   For an observed n, what is the significance Z0 with which 
     we would reject the s = 0 hypothesis? 
 
2)   What is the expected (or more precisely, median ) Z0 if  
     the true value of the signal rate is s? 
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Gaussian approximation for Poisson significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for Poisson significance 

Likelihood function for parameter s is 

or equivalently the log-likelihood is 

Find the maximum by setting  

gives the estimator for s:  
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Approximate Poisson significance (continued) 
The likelihood ratio statistic for testing s = 0 is 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z0|s+b], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(µ s+b),  median significance, 
assuming µ = 1, of the hypothesis µ = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, arXiv:1007.1727 


