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                  Limits for Poisson mean 
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                  Upper vs. unified limits (F-C) 
                  Spurious exclusion, CLs, PCL 
                  Look-elsewhere effect 
                  Why 5σ for discovery? 
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Reminder about statistical tests 
Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Equivalently define a p-value pµ such that the critical region  
corresponds to pµ < α.  

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval depends on the choice of the test, which is often based  
on considerations of power. 
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Power of a statistical test 
Where to define critical region?  Usually put this where the 
test has a high power with respect to an alternative hypothesis µ′. 
 
The power of the test of µ with respect to the alternative µ′ is 
the probability to reject µ if µ′ is true: 

(M = Mächtigkeit, 
мощность) 

p-value of hypothesized µ 
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Choice of test for limits 
Suppose we want to ask what values of µ can be excluded on  
the grounds that the implied rate is too high relative to what is 
observed in the data. 

The interesting alternative in this context is µ = 0.   

The critical region giving the highest power for the test of µ relative 
to the alternative of µ = 0 thus contains low values of the data. 

  Test based on likelihood-ratio with respect to 
 one-sided alternative → upper limit. 



I.e. for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 
For purposes of setting an upper limit on µ use 

where 
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Choice of test for limits (2) 
In other cases we want to exclude µ on the grounds that some other 
measure of incompatibility between it and the data exceeds some 
threshold. 

For example, the process may be known to exist, and thus µ = 0 
is no longer an interesting alternative. 

If the measure of incompatibility is taken to be the likelihood ratio 
with respect to a two-sided alternative, then the critical region can  
contain both high and  low data values.   
       → unified intervals, G. Feldman, R. Cousins,  

 Phys. Rev. D 57, 3873–3889 (1998) 

The Big Debate is whether to use one-sided or unified intervals 
in cases where the relevant alternative is at small (or zero) values 
of the parameter.  Professional statisticians have voiced support 
on both sides of the debate.  
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Unified (Feldman-Cousins) intervals 
We can use directly 
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as a test statistic for a hypothesized µ. 

where 

Large discrepancy between data and hypothesis can correspond 
either to the estimate for µ being observed high or low relative 
to µ. 

This is essentially the statistic used for Feldman-Cousins intervals 
(here also treats nuisance parameters).   
     G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873. 

Lower edge of interval can be at µ = 0, depending on data. 
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Distribution of tµ	


Using Wald approximation, f (tµ|µ′) is noncentral chi-square 
for one degree of freedom:  
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Special case of µ = µ ′ is chi-square for one d.o.f. (Wilks). 

The p-value for an observed value of tµ is 

and the corresponding significance is 
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Upper/lower edges of F-C interval for µ versus b 
for n ~ Poisson(µ+b) 

Lower edge may be at zero, depending on data. 

For n = 0, upper edge has (weak) dependence on b. 

Feldman & Cousins, PRD 57 (1998) 3873 

G. Cowan  
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Feldman-Cousins discussion 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 
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Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  Use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 
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Ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure for upper limits. 

Unified intervals also effectively reduce spurious exclusion by 
the particular choice of critical region. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ = 1 (s+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 3 18 

The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     
f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (q|b)     f (q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Power Constrained Limits (PCL) 
CLs has been criticized because the exclusion is  based on a ratio 
of p-values, which did not appear to have a solid foundation. 

The coverage probability of the CLs upper limit is greater than the  
nominal CL = 1 - α by an amount that is generally not reported. 

Therefore we have proposed an alternative method for protecting 
against exclusion with little/no sensitivity, by regarding a value of 
µ to be excluded if: 
 

Here the measure of sensitivity is the power of the test of µ 
with respect to the alternative µ = 0: 

Cowan, Cranmer, Gross, Vitells,  
arXiv:1105.3166 
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Constructing PCL 
First compute the distribution under assumption of the  
background-only (µ = 0) hypothesis of the “usual” upper limit µup  
with no power constraint. 

The power of a test of µ with respect to µ = 0 is the fraction of 
times that µ is excluded (µup < µ): 

Find the smallest value of µ (µmin), such that the power is at 
least equal to the threshold Mmin. 

The Power-Constrained Limit is: 
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Upper limit on µ for x ~ Gauss(µ,σ) with µ ≥ 0 

x 
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Choice of minimum power 
Choice of Mmin is convention.  Formally it should be large relative 
to α (5%).   Earlier we have proposed 

because in Gaussian example this means that one applies the 
power constraint if the observed limit fluctuates down by one  
standard deviation. 

For the Gaussian example, this gives µmin = 0.64σ, i.e., the lowest  
limit is similar to the intrinsic resolution of the measurement (σ). 

More recently for several reasons we have proposed Mmin = 0.5,  
(which gives µmin = 1.64σ), i.e., one imposes the power constraint  
if the unconstrained limit fluctuations below its median under the  
background-only hypothesis. 



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 3 24 

Comparison of reasons for (non)-exclusion 
Suppose we observe x = -1.   

µ = 1 excluded by diag. line, 
why not by other methods? 

PCL (Mmin=0.5):  Because 
the power of a test of µ = 1 
was below threshold. 

CLs:  Because the lack of 
sensitivity to µ = 1 led to 
reduced 1 – pb, hence CLs  
not less than α.  

F-C:  Because µ = 1 was not 
rejected in a test of size α 
(hence coverage correct). 
But the critical region 
corresponding to more than  
half of α is at high x. 

x 
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Coverage probability for Gaussian problem 
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More thoughts on power* 
*thanks to Ofer Vitells 

Synthese 36 (1):5 - 13. 

Birnbaum formulates a concept of statistical evidence 
in which he states: 
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More thoughts on power (2)* 
*thanks to Ofer Vitells 

This ratio is closely related to the exclusion criterion for CLs. 

Birnbaum arrives at the conclusion above from the likelihood 
principle, which must be related to why CLs for the Gaussian 
and Poisson problems agree with the Bayesian result. 
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Negatively Biased Relevant Subsets 
Consider again x ~ Gauss(µ, σ) and use this to find limit for µ. 

We can find the conditional probability for the limit to cover µ  
given x in some restricted range, e.g., x < c for some constant c. 

This conditional coverage probability may be greater or less than  
1 – α for different values of µ (the value of which is unkown). 

But suppose that the conditional coverage is less than 1 – α for  
all values of µ.  The region of x where this is true is a  
Negatively  Biased Relevant Subset. 

 Recent studies by Bob Cousins (CMS) and 
 Ofer Vitells (ATLAS) related to earlier publications, 
 especially, R. Buehler, Ann. Math. Sci., 30 (4) (1959) 845. 
 See R. D. Cousins, arXiv:1109.2023 
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Betting Games 
So what’s wrong if the limit procedure has NBRS? 

Suppose you observe x, construct the confidence interval and assert  
that an interval thus constructed covers the true value of the  
parameter with probability 1 – α .   

This means you should be willing to accept a bet at odds α : 1 – α  
that the interval covers the true parameter value. 

Suppose your opponent accepts the bet if x is in the NBRS, and  
declines the bet otherwise.  On average, you lose, regardless of 
the true (and unknown) value of µ. 

With the “naive” unconstrained limit, if your opponent only accepts  
the bet when x < –1.64σ, (all values of µ excluded) you always lose! 

(Recall the unconstrained limit based on the likelihood ratio never  
excludes µ = 0, so if that value is true, you do not lose.) 
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NBRS for unconstrained upper limit 

Maximum wrt µ is less than 
1-α → Negatively biased 
relevant subsets. 

N.B. µ = 0 is never excluded 
for unconstrained limit based 
on likelihood-ratio test, so at 
that point coverage = 100%, 
hence no NBRS. 

For the unconstrained upper limit (i.e., CLs+b) the conditional 
probability for the limit to cover µ given x < c is: 

← 1 - α 
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(Adapted) NBRS for PCL 

Coverage goes to 100% for   
µ <µmin, therefore no NBRS.  
 
Note one does not have max 
conditional coverage ≥ 1-α 
for all µ > µmin (“adapted 
conditional coverage”).  But 
if one conditions on µ, no 
limit would satisfy this.  

For PCL, the conditional probability to cover  µ given x < c is: 

← 1 - α 
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Conditional coverage for CLs, F-C 
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The Look-Elsewhere Effect 
Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	


The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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p-value for fixed mass 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0. 

Gross and Vitells 
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p-value for floating mass 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 

Gross and Vitells 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Trials factor 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show that the “trials factor” can be  
approximated by 

where ‹N› = average number of “upcrossings” of -2lnL in fit range  
and 

is the significance for the fixed mass case. 

So we can either carry out the full floating-mass analysis (e.g. use  
MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 
The Gross-Vitells formula for the trials factor requires the 
mean number “upcrossings” of -2ln L in the fit range based 
on fixed threshold. 

estimate with MC 
at low reference 
level 

Gross and Vitells 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 
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Vitells and Gross, arXiv:1105.4355 



Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 

40 G. Cowan  

Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 
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Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 
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Why 5 sigma (cont.)? 
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Summary for first three lectures 
Using a frequentist statistical test we can: 

 test the background-only model (rejection = discovery), 
 test possible signal models (rejection leads to limits). 

For large enough data sample, approximate formulae allow for 
easy evaluation of discovery/exclusion significance. 

The important properties of limits include: 
 specified probability to cover true parameter. 

Bayesian approach extends probability to degree of belief, 
 and also produce intervals with good frequentist properties. 

We saw in the Poisson example that with a one-sided test, 
all parameter values can be excluded (null interval).  
We will return to this point on Friday.  
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Summary and conclusions 
Exclusion limits effectively tell one what parameter values are 
(in)compatible with the data. 

 Frequentist:  exclude range where p-value of param < 5%. 
 Bayesian:  low prob. to find parameter in excluded region.  

In both cases one must choose the grounds on which the parameter 
is excluded (estimator too high, low?  low likelihood ratio?) .  

With a “usual” upper limit, a large downward fluctuation 
can lead to exclusion of parameter values to which one has 
little or no sensitivity (will happen 5% of the time). 

 “Solutions”:  CLs, PCL, F-C 

All of the solutions have well-defined properties, to which 
there may be some subjective assignment of importance. 
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Extra slides 
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Coverage probability of intervals for Poisson mean 
Probability for interval to cover s as function of s 
(note effect of Poisson discreteness). 



Reference priors J. Bernardo, 
L. Demortier, 
M. Pierini Maximize the expected Kullback–Leibler 

divergence of posterior relative to prior: 
 

 

This maximizes the expected posterior information 
about θ when the prior density is π(θ). 

Finding reference priors “easy” for one parameter: 
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(PHYSTAT 2011) 



Reference priors (2) 
J. Bernardo, 
L. Demortier, 
M. Pierini 

Actual recipe to find reference prior nontrivial; 
see references from Bernardo’s talk, website of 
Berger (www.stat.duke.edu/~berger/papers) and also  
Demortier, Jain, Prosper, PRD 82:33, 34002 arXiv:1002.1111: 

Prior depends on order of parameters.  (Is order dependence  
important? Symmetrize?  Sample result from different orderings?) 
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(PHYSTAT 2011) 



L. Demortier 
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(PHYSTAT 2011) 
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RooStats 
G. Schott 
PHYSTAT2011 
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RooFit Workspaces 

Able to construct full likelihood for combination of channels 
(or experiments). 
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G. Schott 
PHYSTAT2011 
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Combined ATLAS/CMS Higgs search 
K. Cranmer 
PHYSTAT2011 

Given p-values p1,..., pN of H, what is combined p? 

Better, given the results of N (usually independent) experiments,  
what inferences can one draw from their combination? 
 
Full combination is difficult but worth the effort for e.g. Higgs search. 
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PCL for upper limit with Gaussian measurement  

Suppose    ~ Gauss(µ, σ), goal is to set upper limit on µ. 

Define critical region for test of µ as 

This gives (unconstrained) upper limit: 

µ̂

inverse of standard Gaussian 
cumulative distribution 
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Power M0(µ) for Gaussian measurement  
The power of the test of µ with respect to the alternative µ′  = 0 is: 

standard Gaussian 
cumulative distribution 
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Spurious exclusion when µ fluctuates down 
Requiring the power be at least Mmin 

implies that the smallest µ to which one is sensitive is 

If one were to use the unconstrained limit, values of µ at or  
below µmin would be excluded if 

 ̂

That is, one excludes µ < µmin when the unconstrained limit  
fluctuates too far downward. 
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Treatment of nuisance parameters 
In most problems, the data distribution is not uniquely specified 
by µ but contains nuisance parameters θ. 

This makes it more difficult to construct an (unconstrained) 
interval with correct coverage probability for all values of θ, 
so sometimes approximate methods used (“profile construction”). 

More importantly for PCL, the power M0(µ) can depend on θ. 
So which value of θ to use to define the power? 

Since the power represents the probability to reject µ if the 
true value is µ = 0, to find the distribution of µup we take the  
values of θ that best agree with the data for µ = 0: 
May seem counterintuitive, since the measure of sensitivity 
now depends on the data.  We are simply using the data to choose 
the most appropriate value of θ where we quote the power. 
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Flip-flopping 
F-C pointed out that if one decides, based on the data, whether to 
report a one- or two-sided limit, then the stated coverage 
probability no longer holds.   

The problem (flip-flopping) is avoided in unified intervals. 

Whether the interval covers correctly or not depends on how one 
defines repetition of the experiment (the ensemble). 

Need to distinguish between: 

 (1) an idealized ensemble; 

 (2) a recipe one follows in real life that resembles (1).  
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Flip-flopping 
One could take, e.g.: 

Ideal:  always quote upper limit (∞ # of experiments). 

Real:  quote upper limit for as long as it is of any interest, i.e., 
until the existence of the effect is well established.  

The coverage for the idealized ensemble is correct. 

The question is whether the real ensemble departs from this 
during the period when the limit is of any interest as a guide 
in the search for the signal. 

Here the real and ideal only come into serious conflict if  you 
think the effect is well established (e.g. at the 5 sigma level) 
but then subsequently you find it not to be well established, 
so you need to go back to quoting upper limits. 
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Flip-flopping 
In an idealized ensemble, this situation could arise if, e.g., 
we take x ~ Gauss(µ, σ), and the true µ is one sigma 
below what we regard as the threshold needed to discover 
that µ is nonzero. 

Here flip-flopping gives undercoverage because one continually  
bounces above and below the discovery threshold.  The effect 
keeps going in and out of a state of being established.   

But this idealized ensemble does not resemble what happens 
in reality, where the discovery sensitivity continues to improve 
as more data are acquired. 


