Unfolding with Gaussian Processes

Adam Bozson, Glen Cowan, Francesco Spano

ATLAS Joint Machine Learning & Statistics Fora Meeting
5 December 2018

HOLLOWAY

Recap

Gave a similar talk in May
indico.cern.ch/event/726207/

Unfolding with Gaussian Processes

Adam Bozson
ATLAS Statistics Forum / 17 May 2018

HOLLOWAY

https://indico.cern.ch/event/726207/

o0

—

||

b

42v?2

Q\

1811.01

ysics.data-an

Recap

Paper submitted to NIM A
Preprint: arXiv:1811.01242 [physics.data-an]

Unfolding with Gaussian Processes

Adam Bozson*, Glen Cowan, Francesco Spano

Department of Physics
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

Abstract

A method to perform unfolding with Gaussian processes

(GPs) is presented. Using Bayesian regression, we define an

estimator for the underlying truth distribution as the mode of the posterior. We show that in the case where the bin
(] contents are distributed approximately according to a Gaussian, this estimator is equivalent to the mean function of
a GP conditioned on the maximum likelihood estimator. Regularisation is introduced via the kernel function of the
¢ GP, which has a natural interpretation as the covariance of the underlying distribution. This novel approach allows for
the regularisation to be informed by prior knowledge of the underlying distribution, and for it to be varied along the
spectrum. In addition, the full statistical covariance matrix for the estimator is obtained as part of the result. The
method is applied to two examples: a double-peaked bimodal distribution and a falling spectrum.

Keywords: unfolding, Gaussian process

1. Introduction

Experimental measurements are distorted and biased
by detector effects, due to limitations of the measuring in-
strument and procedures. The need to infer the underlying
distribution using the measured data is shared by variety
of fields, from astronomy [1] and medical applications [2]
to the investigation of the parameters that describe oil well
properties [3].

In most of these fields, these techniques are called de-
convolution or restoration [4]. They are used to solve what
is defined as the inverse problem: to infer an unknown
function f(x) from the measured data, using knowledge
and assumptions of the distortions.

In particle physics such techniques are known as un-
folding and a variety of methods have been developed for
this purpose (for some reviews see Refs. [5, 6, 7]).

In this paper, a novel Bayesian method to perform un-
folding in particle physics is proposed. We use an approach

on the maximum likelihood (ML) method, and the need
for regularisation. In a Bayesian setting, the likelihood
is enhanced by prior information so that the ML solu-
tion is replaced by the mode of the posterior distribution.
Sec. 4 connects the maximum a posterior: (MAP) estim-
ator to the solution of a regression problem which condi-
tions prior knowledge encoded in a Gaussian process on
the ML solution extracted from data. Example applica-
tions are provided in Sec. 5. Finally, we report the conclu-
sions and outlook for future exploration of this method in
Sec. 6.

2. Definitions and notation

In particle physics, measured distributions are often re-
ported as populations of bins rather than continuous func-
tions. Therefore the first step we will take is to represent
the underlying distributions with discretised bin popula-
+ione We note that thice nrocece hiacee the ectimated hieo

https://arxiv.org/abs/1811.01242

Recap

Code at github.com/adambozson/gp-unfold

launch binder

& hub.mybinder.org/user/adambozson-gp-unfold-00z9s0lj/notebooks &

Bimodal Falling exponential
: Ju pyte I Bimodal (autosaved) ﬁ
File Edit View Insert Cell Kernel Widgets Help Not Trusted | Python2 O

B+ < @ B 2+ ¥ MRun B C MW Code

<>
B

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Example: Bimodal distribution

We wish to solve the inverse problem
vi = Z Ryp; + i
J
for u; given data n; with expectation value E[n;] = v;.

First, generate some y (truth), v (reco), n (data). We set # = 0 for this example.

1. Generate example data

Consider a double-hump spectrum made by the sum of two Gaussians. This is generated by the

generate_double peak(n_samples, smear) function. It also returns a reco sample with Gaussian noise of amplitude
smear .

In [2]: def generate double peak(size, smear):
peakl = np.random.normal(0.3, 0.1, int(size/2))

https://github.com/adambozson/gp-unfold
https://mybinder.org/v2/gh/adambozson/gp-unfold/master

The unfolding problem

freco(m) — /R(m‘y) ftrue(y) dy

AN
|
o+

@)
@)
o
B
O,
8
Discretise
=
O
|
g
]
=1
=

N

|
e
=
1
®R

(y)dy

The unfolding problem

Background

I/ R | ﬂ Set to zero for now

Reco

Aim: Given data, estimate truth

* Deshan was very happy to feature on this slide

Likelihood

Measure data T
with expectation values E[n] = UV

and covariance matrix V

If the data distribution can be approximated as Gaussian

n~Nw,V)

Then the log-likelihood is

—l(n—v)TV_l(n—l/)Jr...

L\ N\ =
(n—Rp)' V' (n—Ru)+...

v

log P(n|v)

1
2

Maximum likelihood

The maximum of

U=R'W (R

(Same result for Poisson)

8

Events per bin

Example

Ingredients

2000 A

1750 -

1500 A

=

N

ul

o
1

1000 A

750 A

500 -

250 A

8-

Ki

— Truth
---- Reco

| 5-8-

¢ Data

0.2

0.4

0.6

0.8 1.0

True x

Response matrix

1.0

0.0

0.25

0.20

0.15

- 0.10

- 0.05

0.2

0.4 0.6 0.8 1.0
Reco x

0.00

Events per bin

Example

Result

5000

| —— Truth

---- Reco
4000 - ¢ ¢ Data
_ P dw
3000 A { 1
2000 A T ¢ |
- r - __._J_-_
B [=T= - g L
10004 ¢ ¢ | - L"_,__."" .
ks, 2 B =
- ® T
0 4 * = =
[]
{]
[]
—1000 -
1 L]
—2000
0.0 0.2 0.4 0.6 0.8 1.0
X

mu_ML = scipy.linalg.solve(R, data)

10

The covariance of the ML (both
Poisson and Gaussian) estimator is

U=R'W (R

Correlation matrix

1.00

0.75

0.50

- 0.25

- 0.00

- —0.25

—0.50

—0.75

—1.00

The covariance of the ML (both
Poisson and Gaussian) estimator is

U=R'W (R

Statistical fluctuations in the data lead to
false fine structure (high-frequency
oscillations) in the unfolded distribution

The ML estimator is unbiased

13

Regularisation

A common solution is to instead maximise

®(p) = alog P(n|p) + S(p)

Regularisation parameter Regularisation function
Controls bias vs. variance Reduces space of solutions

or an iterative method (Lucy, Richardson), stopping before the ML solution

or a Bayesian method (EBU), conditioning a prior on the data

Common theme: we expect the unfolded distribution to have some smoothness
(based on our knowledge of the underlying physics)

14

https://arxiv.org/abs/1010.0632
https://arxiv.org/abs/1201.4612

Maximum a posteriori

Posterior probability given by Bayes’ theorem

P(n|p) P(p)
P(n)

P(pln) =

log P(u|n) = log P(n|p) +log P(u) + ...

/ \

Likelihood Prior

All distributions are approximately Gaussian

15

Treat the truth distribution as a Gaussian process

p~N(p, K)

Covariance matrix from kernel function

Kij = k(yi,y;)

Maximum a posteriori

log P(u|n) = log P(n|w) + log P(p) + ...
1 1

~5 (= Rp)' V' (n—Rp)— o (n—p) K" (p—)+ ...

Use the mode of the posterior as an estimator for the unfolded histogram

dlog P(p|n)
dp p=p

=(n-Rp) V 'R+ (p—p) K'=0

f=[K'+RV 'R (RV 'n+K ')
—K[K+R'WERYHY] (R'n-pa)+i

17

p=K[K+R'WEYHY] (R 'n-p)+p

T R _
U=R'W(R') fmL=R'n
Remember the ML estimator?

The MAP estimator is the mean of a Gaussian process
regressor using the ML estimator as training points

Since the posterior distribution is Gaussian (product of
Gaussians), the mode is equal to the mean

18

GP regression

Start from a prior over functions
f(x) ~ GP(m(z), k(z,z'))
Given observations Y at X, we want to estimate f. at X,

Condition the prior on the observations via Bayes’ rule

f*‘yr\J_/\/'(j-ik,Z*)7 where
f*:KI[K—I—E]_l(y—m)—I—m*,
Y, =K,..— Kl [K+Y] 'K,

19

See e.g. gaussianprocess.org/gpml

http://gaussianprocess.org/gpml

GP unfolding

Posterior mean for GP regression

f*‘yf\/./\/'(f*,Z*)7 where
f*:KI[K—I—E]_l(y—m)—I—m*,
Y, =K. — K'[K+3] 'K,

So we can generalise the MAP result
. =K [K+U]" (R 'n—) + .
Y, =K. — KK +U]"' K,

20

Events per bin

Example

Ingredients

2000 A

1750 -

1500 A

=

N

ul

o
1

1000 A

750 A

500 -

250 A

8-

Ki

— Truth
---- Reco

| 5-8-

¢ Data

0.2

0.4

0.6

0.8 1.0

21

True x

Response matrix

1.0

0.0

0.25

0.20

0.15

- 0.10

- 0.05

0.2

0.4 0.6 0.8 1.0
Reco x

0.00

Events per bin

Bias

Example

Result
—— Truth
2000 - § Data
1750 - b e
; ¢ $. . .
1500 -) U = np.dot(scipy.linalg.inv(R),
3 3 3 np.dot(np.diag(data),
1250 - scipy.linalg.inv(R).T))
¢
1000 A K = kernel(X, X, params)
3 ¢ ‘}‘ alpha = solve(np.dot(R, K+U), data)
750 -
: mu = np.dot(K, alpha)
500 - cov = K — np.dot(K, solve(K+U, Ks.T))
[] []
250 -
A
0
1004 - { }
0- A*} } }} }}}}}}}}}}}}
—~1004 |
0.0 0.2 0.4 0.6 0.8 1.0
X

22

Events per bin

Bias

Example

Result
—— Truth
2000 - ! Data
u Correlation matrix
1750 - : : 4 Her 1.00
1500 - ! i § 0.75
: : ¢
1250 - 0.50
]
1000 A r0.25
s ¢ -i—

750 A X - 0.00

500 - ¢ L _0.25

- E o —0.50

5 -
A ~0.75
0
100 } ~1.00
0- A*}{} } }}}}}}}}}}}}
1004 |
0.0 0.2 0.4 0.6 0.8 1.0
X

23

Kernel

The kernel controls the smoothness of the solution

k(z,2') = Aexp ((= ;lf/)2>

/ ~Z

Bias/variance Length scale

Can use physically-motivated kernels
(e.g. JES/PDF uncertainties: Gibbs kernel)

How to optimise the hyperparameters?
]. —1 . T —1 —1 .].
logP(n|9):—§(R n—p) Ke+U] (R n—u)—§log]K9+UH—...

Regularisation can be varied along the spectrum with a non-stationary kernel

24

Kernel

0.25
0.20 A //
T 0.15 - 1 5 10 15 20 25 30
] +
S
(@)
C
& 0.10
0.05 -
0.00
10 12 14 16 18 20

logA (amplitude)

How to optimise the hyperparameters?
]. —1 . T —1 —1 .].
logP(n|9):—§(R n—p) Ke+U] (R n—,u)—§log]K9+UH—...

Regularisation can be varied along the spectrum with a non-stationary kernel

25

3) where r = |x — x|

Varying regularisation
3—3Rr*+R

Y
—2r

e
12

k(r)

2500

2000 A

1500 -

1000 -

2500

2000 A

1500 -

1000 -

500 A

0.4

0.2

1.00.0

0.6 0.8 1.00.0 0.2 04 06 0.8

0.4

0.2

0.0

20

Conclusion

Unfolding can be performed with a GP regressor

The MAP estimator is the mean of a GP using the

ML estimator as training points

The kernel controls the regularisation

Preprint: arXiv:1811.01242 [physics.data-an]

Code: github.com/adambozson/gp-unfold

27

https://arxiv.org/abs/1811.01242
https://github.com/adambozson/gp-unfold

