Decomposition of Stat/Sys Errors

ATLAS Statistics Forum CERN, 12 September 2017

Glen Cowan Physics Department Royal Holloway, University of London www.pp.rhul.ac.uk/~cowan g.cowan@rhul.ac.uk

Background info

Recall prototypical analysis:

primary data x,

parameter of interest μ ,

nuisance parameter(s) $\theta = (\theta_1, ..., \theta_N),$

control measurements y,

model $P(x, y | \mu, \theta) = L(\mu, \theta)$ (the likelihood).

Often control measurements are designed to constrain a particular nuisance parameter, e.g., $y_i = \tilde{\theta}_i$, could be "best guess" of θ_i , but treated as a measurement with a sampling distribution $p(\tilde{\theta}_i | \theta_i)$.

Maximize the likelihood $\rightarrow \hat{\mu}$

Variance of $\hat{\mu}$ reflects total uncertainty, i.e., the model *with* nuisance parameters is "correct", no systematic uncertainty.

G. Cowan

Commonly used method

- Identify source of systematic with nuisance parameter θ.
 Fix θ = θ₀
- 3) Repeat fit, get $\hat{\mu}_{\theta 0}$
- 4) Get variance $V[\hat{\mu}_{\theta 0}]$
- 5) $\sigma_{\text{sys},\theta} = (V[\hat{\mu}] V[\hat{\mu}_{\theta 0}])^{1/2}$

But what about nuisance parameters that we expect to be (at least partially) constrained by the data, e.g, background level/shape?

At least some portion of the uncertainty in such nuisance parameters is more logically regarded as a statistical error.

Alternative approach / example

Goal (?) of stat/sys breakdown is to communicate how the uncertainty is expected to scale with luminosity, so, define ratio of lumi to that of actual measurement

$$\lambda = \mathcal{L}/\mathcal{L}_0$$

and rewrite model so as to include lambda. E.g.,

$$x \sim \text{Gauss}(\lambda(\mu + \beta)e^{\theta}, \sqrt{\lambda}\sigma_x)$$
$$y \sim \text{Gauss}(\lambda\beta, \sqrt{\lambda}\sigma_y)$$
$$z \sim \text{Gauss}(\theta, \sigma_z)$$

Here μ is parameter of interest (~signal rate); β (~background rate) and θ (scale factor) are nuisance parameters.

x is "main" measurement; y and z are control measurements.

G. Cowan

ATLAS Stat Forum 12 Sep 2017 / Decomposition of Stat/Sys Errors

Example (2)

Likelihood = product of 3 Gaussians $\rightarrow -2\ln L$ gives

$$\chi^2(\mu,\beta,\theta) = \frac{(x-\lambda(\mu+\beta)e^{\theta})^2}{\lambda\sigma_x^2} + \frac{(y-\lambda\beta)^2}{\lambda\sigma_y^2} + \frac{(z-\theta)^2}{\sigma_z^2}$$

Minimizing χ^2 gives estimators

$$\hat{\mu} = \frac{1}{\lambda}(xe^{-z} - y)$$
 $\hat{\beta} = y/\lambda$ $\hat{\theta} = z$

Linear error propagation gives the variance

$$V[\hat{\mu}] = \frac{1}{\lambda} \left(e^{-2\theta} \sigma_x^2 + \sigma_y^2 \right) + (\mu + \beta)^2 \sigma_z^2$$

stat sys

G. Cowan

ATLAS Stat Forum 12 Sep 2017 / Decomposition of Stat/Sys Errors

Result of example (constant σ_z)

Plot variance versus λ^{-1} , intercept at zero (infinite lumi) corresponds to systematic error:

Variation on example

But suppose the std. deviation of control measurement z had been modeled as

$$\sigma_z = \sqrt{\sigma_{z0}^2 + \frac{\sigma_{z1}^2}{\lambda}}$$

Here σ_{z0} will contribute to the part that does not change with λ , (systematic error), σ_{z1} to part that goes as $1/\lambda$ (stat error).

But in the first ("commonly used") method, fixing θ would in in effect treat both as part of the systematic uncertainty.

MC (exact) determination of variance

Estimator for μ nonlinear in z, so error propagation not exact; use MC to get variance:

G. Cowan

ATLAS Stat Forum 12 Sep 2017 / Decomposition of Stat/Sys Errors

Extrapolate or not?

Behaviour in region near nominal lumi may seem like reasonable basis for stat/sys decomposition, but may not give meaningful extrapolation to infinite lumi:

G. Cowan

ATLAS Stat Forum 12 Sep 2017 / Decomposition of Stat/Sys Errors