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A simulated SUSY event

high p.. jets
of hadrons

missing transverse energy
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Background events

ATLAS Aatlantis Event: myFiles2_8.4.0_3026_799902

This event from Standard
Model ttbar production also
has high p. jets and muons,
and some missing transverse
energy.

— can easily mimic a
SUSY event.
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Physics context of a statistical test

Event Selection: the event types in question are both known to exist.

Example: separation of different particle types (electron vs muon)

or known event types (ttbar vs QCD multijet).
E.g. test H, : event is background vs. H, : event is signal.

Use selected events for further study.

Search for New Physics: the null hypothesis is
H, : all events correspond to Standard Model (background only),
and the alternative i1s

H, : events include a type whose existence is not yet established
(signal plus background)

Many subtle issues here, mainly related to the high standard of proof
required to establish presence of a new phenomenon. The optimal statistical
test for a search is closely related to that used for event selection.
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Statistical tests for event selection

Suppose the result of a measurement for an individual event
is a collection of numbers & = (x1,...,Zn)

x, = number of muons,
X, = mean p of jets,
X, = missing energy, ...

T follows some n-dimensional joint pdf, which depends on
the type of event produced, 1.e., was it

pp—tt, PP —4gg,-..

For each reaction we consider we will have a hypothesis for the
pdfof 7, e.g., f(Z|Ho), f(Z|H1) , etc.

E.g. call H, the background hypothesis (the event type we
want to reject); [, 1s signal hypothesis (the type we want).
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Selecting events

Suppose we have a data sample with two kinds of events,
corresponding to hypotheses H, and H, and we want to select

those of type H,.

Each event is a point in  space. What ‘decision boundary’
should we use to accept/reject events as belonging to event
types H, or H,?

Perhaps select events
with ‘cuts’:

T, <

X j <Cj
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Test statistics

The boundary of the critical region for an n-dimensional data
space x = (x,,..., X,,) can be defined by an equation of the form

t(xy,....xn) = teut
where #(x,,..., x,) 1s a scalar test statistic.
We can work out the pdfs g(t|Ho), g(t|H1), - ..

2

g(1)

4

cut

Decision boundary is now a . accept Hy - refect H,
single ‘cut’ on ¢, defining |
the critical region. i g(tiHy) |

So for an n-dimensional
problem we have a 05 r
corresponding 1-d problem.
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Test statistic based on likelihood ratio

How can we choose a test’s critical region 1n an ‘optimal way’?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of
H,, (background) versus H,, (signal) the critical region should have

f(x|Hy)
f(x|Ho)

> C

inside the region, and < c outside, where c 1s a constant chosen
to give a test of the desired size.

_ f(x|H1)
f(x[Hp)

Equivalently, optimal scalar test statistic is | #(x)

N.B. any monotonic function of this is leads to the same test.
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Classification viewed as a statistical test

Probability to reject H,, if true (type I error): « = f(x|Hp)dx
W

a = size of test, significance level, false discovery rate

Probability to accept H, if H, true (type II error) 5 = f(x|Hy)dx
w
1 = p = power of test with respect to H,

Equivalently if e.g. H, = background, H, = signal, use efficiencies:

e, = | f(x|Hp) =
W

es= | f(x|H1) =1— B = power
W
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Purity / misclassification rate

Consider the probability that an event of signal (s) type
classified correctly (i.e., the event selection purity),

Use Bayes’ theorem:

£ prior probability

Here W is signal region

N \/
P(x € W|s)P(s)
PexeW) = 5 cWioPE) + Px e Wh)P(D)
\ N e
posterior probability = signal purity
= ] — signal misclassification rate

Note purity depends on the prior probability for an event to be
signal or background as well as on s/b efficiencies.
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Neyman-Pearson doesn’t usually help

We usually don’t have explicit formulae for the pdfs f(x|s), f(x|b),
so for a given x we can’t evaluate the likelihood ratio

 f(xls)
") = 7o)

Instead we may have Monte Carlo models for signal and
background processes, so we can produce simulated data:

generate x ~ f(x|s) —  Xy,..., Xy

generate x ~ f(x|b) —  x,..., Xy

This gives samples of “training data” with events of known type.

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).
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Approximate LR from histograms

Want #(x) = f(x|s)/f(x|b) for x here

\/

)
=
Z

One possibility is to generate
MC data and construct
histograms for both

signal and background.

N(x[s) = f(x]s) —s

_—
—I

N(xib)

G. Cowan

Use (normalized) histogram
values to approximate LR:

N(x[b) = f(x|b) I N (z|s)
e \: t(z) ~ N (z|b)

Can work well for single

variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables. Try using 2-D histograms:

> >
signal — ."-:-;;.f—.:‘;;:%.s':.i." . “._ ol . : back-
RS AN AT T[] eround
‘ N. - 4q....'_; ;. i _:. j
X W DA AN

Approximate pdfs using N(x,y|s), N(x,y|b) in corresponding cells.

But if we want M bins for each variable, then in n-dimensions we
have M" cells; can’t generate enough training data to populate.

— Histogram method usually not usable for » > 1 dimension.
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f(x|s), f(x|b).

Histogram method with M bins for n variables requires that

we estimate M" parameters (the values of the pdfs in each cell),
so this 1s rarely practical.

A compromise solution 1s to assume a certain functional form
for the test statistic #(x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f(x|s) and
f(x|b) (with something better than histograms) and use the
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods

Many new (and some old) methods:

Fisher discriminant
Neural networks
Kernel density methods
Support Vector Machines
Decision trees

Boosting

Bagging

New software for HEP, e.g.,
TMVA , Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
StatPatternRecognition, I. Narsky, physics/0507143
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Resources on multivariate methods

C.M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of
Statistical Learning, 2" ed., Springer, 2009

R. Duda, P. Hart, D. Stork, Pattern Classification, 2™ ed.,
Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2" ed., Wiley, 2002.

Ilya Narsky and Frank C. Porter, Statistical Analysis
lechniques in Particle Physics, Wiley, 2014.

KKE (RE), TBRBIFEZTSHEITHT. BFHARe,
dE3=, 2009,
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Linear test statistic

Suppose there are »n input variables: x = (x,..., x).

n
Consider a linear function:  y(Xx) = Z W;T;
i=1

For a given choice of the coefficients w = (w,,..., w,) we will

get pdfs f(y|s) and f(y|b) :

L(y\s)
| \’\ ,{L/g'(’gnﬂ
& \& > o, <~

1 T
Elyls]  Efylb]
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Linear test statistic

Fisher: to get large difference between means and small widths
for f(y|s) and f(y|b), maximize the difference squared of the
expectation values divided by the sum of the variances:

_ (Elyls] - Elylb)?
TW) = PRV

Setting 0J/ ow,; = 0 gives:
w o W (pap, — )

W;; = cov|z;, z;|s] + cov|z;, x;|b]

pis = Elzils], pip = Elzi|b]
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The Fisher discriminant

The resulting coefficients w,; define a Fisher discriminant.

Coefficients defined up to multiplicative constant; can also
add arbitrary offset, 1.e., usually define test statistic as

T
y(x) = wo + Z W;T;
i=1

Boundaries of the test’s
critical region are surfaces
of constant y(x), here linear

(hyperplanes):
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Fisher discriminant for Gaussian data

Suppose the pdfs of the input variables, f(x|s) and f(x|b), are both
multivariate Gaussians with same covariance but different means:

f(x|s) = Gauss(u
f(xb) = Gauss(u,, V) < Vi~ covlx x|

o V) <€— Same covariance

f(x]s)
f(x[b)
1.€., it 1S a monotonic function of the likelihood ratio and thus

leads to the same critical region. So in this case the Fisher
discriminant provides an optimal statistical test.

In this case i1t can be shown y(x) ~ In
that the Fisher discriminant is
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Transformation of inputs

If the data are not Gaussian with equal covariance, a linear decision
boundary 1s not optimal. But we can try to subject the data to a

transformation . R
(Pl(x)) AAF (pm(x)

and then treat the ¢ as the new input variables. This 1s often called

“feature space” and the ¢ are “basis functions™. The basis

functions can be fixed or can contain adjustable parameters which
we optimize with training data (cf. neural networks).

In other cases we will see that the basis functions only enter as
dot products

p—y —_—

(p(‘i:i)'(p(fj):K(‘i:i) -7::])

and thus we will only need the “kernel function™ K(x’,, xj)

G. Cowan LAL Orsay, 2016 / Lectures on Statistics
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[ _inear decision boundaries

A linear decision boundary 1s only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Nonlinear transformation of inputs

We can try to find a transformation, Xi,---, X, =@ (X),....9,(X)
so that the transformed “feature space” variables can be separated

better by a linear boundary:

» Here, guess fixed
¢ =tan  (x,/x;) basis functions

s (no free parameters)
P,=\Vx; X,
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Neural networks

Neural networks originate from attempts to model neural processes
(McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only “advanced”
multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing
the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the
resulting discriminant function has the best performance.

G. Cowan LAL Orsay, 2016 / Lectures on Statistics
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The single layer perceptron

n
Define the discriminant using y(X)=h Wo"‘Z WX,
i=1

where /& 1s a nonlinear, monotonic activation function; we can use
. . . o —-X _1
e.g. the logistic sigmoid A(x)=(1+e ) .

X
If the activation function is monotonic, |
the resulting y(x) is equivalent to the
original linear discriminant. This is an O y(x)
example of a “generalized linear model”
called the single layer perceptron. T
X

» output node

input layer
G. Cowan LAL Orsay, 2016 / Lectures on Statistics
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The activation function

For activation function A(-) often use logistic sigmoid:

h(z) = 1 —I—le-f"
h(x) |
0.8
0.6
0.4
0.2
0
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The multilayer perceptron

Now use this idea to define not only the output y(x), but also the set of
transformed inputs ¢, (x),...,®,, (X) that form a “hidden layer’:

Superscript for weights indicates
layer number

\

n
P (F)=h|wy+ 2, w)'x,
j=1

! hidden  output

inputs
layer ¢
This 1s the multilayer perceptron, our basic neural network model;

straightforward to generalize to multiple hidden layers.
G. Cowan LAL Orsay, 2016 / Lectures on Statistics 29



Network training

The type of each training event is known, i.e., for event a we have:

xa:(xl 3eers x,,) the input variables, and

t,=0,1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function”

Contribution to error function
from each event

G. Cowan LAL Orsay, 2016 / Lectures on Statistics



Numerical minimization of E(w)

Consider gradient descent method: from an initial guess in weight
space w'" take a small step in the direction of maximum decrease.
[.e. for the step T to T+1,

W= OV £ (37

learning rate (1>0)

If we do this with the full error function E(w), gradient descent does
surprisingly poorly; better to use “conjugate gradients”.

But gradient descent turns out to be useful with an online (sequential)
method, 1.e., where we update w for each training event a, (cycle through

all training events):
w(T+1)= w(f)_ n V Ea(w(f))
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Error backpropagation

Error backpropagation (“backprop™) is an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written y(x) = h(u(x)) where

(1) ..
Z Wik Xk
k=0

where we defined ¢, = x, = | and wrote the sums over the nodes

u(?c):Z w(lz}(pj(}), @ (x)=h
=0

in the preceding layers starting from 0 to include the offsets.

0E,

So e.g. for event a we have e (yo—t)h" (u(X))p,(F)
" AN
derivative of
Chain rule gives all the needed derivatives. activation function
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Overtraining

Including more parameters 1n a classifier makes its decision boundary
increasingly flexible, e.g., more nodes/layers for a neural network.

A “flexible” classifier may conform too closely to the training points;
the same boundary will not perform well on an independent test
data sample (— “overtraining”).

> 4 > 4

i training sample - 1independent test sample

G. Cowan LAL Orsay, 2016 / Lectures on Statistics 33



Monitoring overtraining

If we monitor the fraction of misclassified events (or similar, e.g.,
error function E(w)) for test and training samples, 1t will usually
decrease for both as the boundary 1s made more flexible:

optimum at minimum of
error rate for test sample

error
rate
l Increase 1n error rate

/ indicates overtraining

— test sample

training sample

flexibility (e.g., number
of nodes/layers in MLP)
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Neural network example from LEP II

Signal: efe” - W*W™ (often 4 well separated hadron jets)
Background: e*e” — qqgg (4 less well separated hadron jets)

s | < 1nput variables based on jet
h oas | oos | 1~ structure, event shape, ...
T e 0 ke ° wawes  nONE by itself gives much separation.
e % “ }&% Neural network output:
I:;(Nm?; ‘ ng\eficit; ’ glf:r\ority1 2:; :
o.o:E~ " o.o:;— Ty o.o::— Th :f L J
?.og(Ap?inori(yf Q Qs'lhrus t1 [ oiain(E,.)i s 01 02 03 04 05 06 07 N%Eron%’utpu:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank

of mineral o1l exposed to a beam Etectron cancidate
fuzzy ring, short trz}qk

of neutrinos and viewed by 1520 v~ &

photomultiplier tubes: w
n : P

MiniBooNE Detector

Muon candidate
sharp ring, filled in

P
W
n ~P
ﬁ | Pion candidate
‘ _two "e-like" rings
. . g ~
Search for n_ to n_ oscillations ol

required particle i.d. using n_— <N

information from the PMTs.
H.J. Yang, MiniBooNE PID, DNP06
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Decision trees

Out of all the mnput variables, find the one for which with a
single cut gives best improvement 1n signal purity:

signal !
signal ! background !

where w.. 1s the weight of the ith event.

P=

Resulting nodes classified as either
signal/background.

[terate until stop criterion reached
based on e.g. purity or minimum
number of events in a node.

The set of cuts defines the decision
boundary.

7/1

2/9

G. Cowan LAL Orsay, 2016 / Lectures on Statistics
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B. Roe et al., NIM 543 (2005) 577
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Finding the best single cut

The level of separation within a node can, e.g., be quantified by
the Gini coefficient, calculated from the (s or b) purity as:

G =p(l—p)

For a cut that splits a set of events a into subsets b and ¢, one
can quantify the improvement in separation by the change in
weighted Gini coefficients:

A=W,G, —W,Gy, — W.G. where,eg., W, = Z w;
1ea

Choose e.g. the cut to the maximize A; a variant of this
scheme can use instead of Gini e.g. the misclassification rate:

c=1—max(p,1 —p)
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Decision trees (2)

The terminal nodes (leaves) are classified a signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with discriminant function

fix) =1 1f x in signal region, —1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.

G. Cowan LAL Orsay, 2016 / Lectures on Statistics page 39



Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that 1s more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X ..., X event data vectors (each x multivariate)

Yysees ¥, tTUE class labels, +1 for signal, —1 for background

W, W event weights

Now define a rule to create from this an ensemble of training samples
I,T, .., derive a classifier from each and average them.

Trick 1s to create modifications in the training sample that give
classifiers with smaller error rates than those of the preceding ones.

A successful example is AdaBoost (Freund and Schapire, 1997).
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AdaBoost

First initialize the training sample 7' using the original

X peeees X event data vectors

Yo ¥y tTUE Class labels (+1 or -1)
w D
1

with the weights equal and normalized such that

> =1

i=1

s W event weights

Then train the classifier fl (x) (e.g. a decision tree) with a method that
incorporates the event weights. For an event with data x,

fx)>0 classify as signal

fx)<0 classity as background

G. Cowan LAL Orsay, 2016 / Lectures on Statistics page 41



Updating the event weights

Define the training sample for step k+1 from that of k by updating
the event weights according to

_ V.12
(k+l)_ (k) e cxkfk(xl).}l
w. = w.
/ ;
i = event index k = training sample index

where Zk 1s a normalization factor defined such that the sum of the

weights over all events 1s equal to one.

Therefore event weight for event i is increased in the k+1 training
sample 1f it was classified incorrectly in sample k.

Idea is that next time around the classifier should pay more

attention to this event and try to get it right.
G. Cowan LAL Orsay, 2016 / Lectures on Statistics page 42



Error rate of the kth classifier

At each step the classifiers f (x) are defined so as to minimize

the error rate €.
N

g.=> whI(y f,.(x,)<0)

i=1

where /(X) = 1 1f X 1s true and is zero otherwise.

G. Cowan LAL Orsay, 2016 / Lectures on Statistics
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Assigning the classitier score

Assign a score to the kth classifier based on its error rate,

x,=In
€k

||M><:

If we define the final classifier as f(x

then one can show that its error rate on the training data satisfies
the bound

K
e<[]2Ve (1—¢,)
k=1

G. Cowan LAL Orsay, 2016 / Lectures on Statistics
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Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred
trees.

G. Cowan

Training MC Samples .VS.  Testing MC Samples
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:

linear (Fisher) discriminant
neural networks
naive Bayes

and has 1n recent years started to use a few more:

boosted decision trees
support vector machines
kernel density estimation
k-nearest neighbour

The emphasis is often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 5o significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 40 evidence from a cut-based method.
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