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Outline 
Lecture 1:  Introduction and review of fundamentals 

 Review of probability 
 Parameter estimation, maximum likelihood 
 Statistical tests for discovery and limits 

Lecture 2:  Multivariate methods 
 Neyman-Pearson lemma 
 Fisher discriminant, neural networks 
 Boosted decision trees 

Lecture 3:  Further topics 
 Nuisance parameters (Bayesian and frequentist) 
 Experimental sensitivity 
 Revisiting limits 
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A simulated SUSY event 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 

G. Cowan  
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Background events 

This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a  
     SUSY event. 

G. Cowan  
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Physics context of a statistical test 
Event Selection:  the event types in question are both known to exist. 

 Example:  separation of different particle types (electron vs muon) 
 or known event types (ttbar vs QCD multijet). 
 E.g. test H0 : event is background vs. H1 : event is signal. 
 Use selected events for further study. 

 
Search for New Physics:  the null hypothesis is 

 H0 : all events correspond to Standard Model (background only),  

and the alternative is 

 H1 : events include a type whose existence is not yet established 
         (signal plus background)  

Many subtle issues here, mainly related to the high standard of proof 
required to establish presence of a new phenomenon.  The optimal statistical 
test  for a search is closely related to that used for event selection. 
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Statistical tests for event selection 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pT of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 
E.g. call H0 the background hypothesis (the event type we  
want to reject); H1 is signal hypothesis (the type we want). 

G. Cowan  
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Selecting events 
Suppose we have a data sample with two kinds of events, 
corresponding to hypotheses H0 and H1 and we want to select 
those of type H1. 

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event 
types H0 or H1? 

accept 
H1 

H0 

Perhaps select events 
with ‘cuts’: 

G. Cowan  
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Other ways to select events 
Or maybe use some other sort of decision boundary: 

accept 
H1 

H0 

accept 
H1 

H0 

linear or nonlinear 

How can we do this in an ‘optimal’ way? 

G. Cowan  
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant chosen 
to give a test of the desired size. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Classification viewed as a statistical test 

Probability to reject H0 if true (type I error): 

α = size of test, significance level, false discovery rate 

Probability to accept H0 if H1 true (type II error): 

1 - β = power of test with respect to H1  

Equivalently if e.g. H0 = background, H1 = signal, use efficiencies: 
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Purity / misclassification rate 
Consider the probability that an event of signal (s) type 
classified correctly (i.e., the event selection purity),  

Use Bayes’ theorem: 

Here W is signal region 
prior probability 

posterior probability = signal purity  
                                  = 1 – signal misclassification rate 

Note purity depends on the prior probability for an event to be 
signal or background as well as on s/b efficiencies. 
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Neyman-Pearson doesn’t usually help 
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio 

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data: 

 generate x ~ f (x|s)     →     x1,..., xN 

 generate x ~ f (x|b)     →     x1,..., xN 
 
This gives samples of “training data” with events of known type. 

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute). 
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Approximate LR from histograms 
Want t(x) = f (x|s)/ f(x|b) for x here 

N (x|s) ≈ f (x|s) 

N (x|b) ≈ f (x|b) 

N
(x
|s
)

N
(x
|b
)

One possibility is to generate 
MC data and construct 
histograms for both 
signal and background. 
 
Use (normalized) histogram  
values to approximate LR: 

x

x

Can work well for single  
variable. 
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Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 
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Strategies for multivariate analysis 

Neyman-Pearson lemma gives optimal answer, but cannot be 
used directly, because we usually don’t have f (x|s), f (x|b). 

Histogram method with M bins for n variables requires that 
we estimate Mn parameters (the values of the pdfs in each cell), 
so this is rarely practical. 

A compromise solution is to assume a certain functional form 
for the test statistic t (x) with fewer parameters; determine them 
(using MC) to give best separation between signal and background. 

Alternatively, try to estimate the probability densities f (x|s) and  
f (x|b) (with something better than histograms) and use the  
estimated pdfs to construct an approximate likelihood ratio. 
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Multivariate methods 
Many new (and some old) methods: 

 Fisher discriminant 
 Neural networks 
 Kernel density methods 
 Support Vector Machines 
 Decision trees 
  Boosting 
  Bagging   

 
New software for HEP, e.g., 
TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 
StatPatternRecognition, I. Narsky, physics/0507143  
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Resources on multivariate methods 

C.M. Bishop, Pattern Recognition and Machine Learning, 
Springer, 2006 

T. Hastie, R. Tibshirani, J. Friedman, The Elements of 
Statistical Learning, 2nd ed., Springer, 2009 

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., 
Wiley, 2001 
A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002. 

Ilya Narsky and Frank C. Porter, Statistical Analysis 
Techniques in Particle Physics, Wiley, 2014. 

朱永生 （编著），实验数据多元统计分析， 科学出版社，  
北京，2009。 
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Linear test statistic 

Suppose there are n input variables:  x = (x1,..., xn).   
 

Consider a linear function: 

For a given choice of the coefficients w = (w1,..., wn) we will 
get pdfs f (y|s) and f (y|b) : 
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Linear test statistic 

Fisher:  to get large difference between means and small widths  
for f (y|s) and f (y|b),  maximize the difference squared of the 
expectation values divided by the sum of the variances: 

Setting ∂J / ∂wi = 0 gives: 

, 
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The Fisher discriminant 

The resulting coefficients wi define a Fisher discriminant. 

Coefficients defined up to multiplicative constant; can also 
add arbitrary offset, i.e., usually define test statistic as 

Boundaries of the test’s 
critical region are surfaces  
of constant y(x), here linear  
(hyperplanes): 
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Fisher discriminant for Gaussian data 

Suppose the pdfs of the input variables, f (x|s) and f (x|b), are both  
multivariate Gaussians with same covariance but different means: 

f (x|s)  = Gauss(µs, V) 

f (x|b)  = Gauss(µb, V) 
Same covariance  
Vij = cov[xi, xj] 

In this case it can be shown  
that the Fisher discriminant is 

i.e., it is a monotonic function of the likelihood ratio and thus 
leads to the same critical region.  So in this case the Fisher 
discriminant provides an optimal statistical test. 
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The activation function 
For activation function h(·) often use logistic sigmoid: 
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Overtraining 
Including more parameters in a classifier makes its decision boundary  
increasingly flexible, e.g., more nodes/layers for a neural network. 

A “flexible” classifier may conform too closely to the training points;  
the same boundary will not perform well on an independent test  
data sample (→ “overtraining”). 

training sample independent test sample 
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Monitoring overtraining 
If we monitor the fraction of misclassified events (or similar, e.g.,  
error function E(w)) for test and training samples, it will usually  
decrease for both as the boundary is made more flexible: 

error 
rate 

flexibility (e.g., number  
of nodes/layers in MLP) 

test sample 
training sample 

optimum at minimum of 
error rate for test sample 

increase in error rate 
indicates overtraining 
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output: 

(Garrido, Juste and Martinez, ALEPH 96-144) 
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for nm to ne oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Decision trees (2) 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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1 

1 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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Summary on multivariate methods 
Particle physics has used several multivariate methods for many years: 

 linear (Fisher) discriminant 
 neural networks 
 naive Bayes   

and has in recent years started to use a few more: 

 boosted decision trees 
 support vector machines 
 kernel density estimation 
 k-nearest neighbour 

The emphasis is often on controlling systematic uncertainties between 
the modeled training data and Nature to avoid false discovery. 

Although many classifier outputs are "black boxes", a discovery 
at 5σ significance with a sophisticated (opaque) method will win the 
competition if backed up by, say, 4σ evidence from a cut-based method. 


