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ON THE FOUNDATIONS OF STATISTICAL INFERENCE: BINARY 
EXPERIMENTS' 

BY ALLAN BIRNBAUM 

Institute of Mathematical Sciences, New York University 

0. Introduction and summary. In Part A (Sections 1-5) the canonical forms 
of experiments concerning two simple hypotheses, and their partial ordering, 
are discussed. It is proved that every such experiment is a mixture (in a prob- 
ability sense) of simple experiments whose sample spaces contain only two 
points. In Parts B (Sections 6-8) some general aspects of inference and decision 
problems are discussed in the usual theoretical framework, in which the overall 
mathematical model of an experiment is the frame of reference for all inter- 
pretations of outcomes. 

In Part C (Sections 9-16), attention is directed to that traditional function 
and basic problem of mathematical statistics, called here "informative inference," 
whose object is to recognize and report in appropriate objective terms those 
features of experimental outcomes which constitute statistical evidence relevant 
to hypotheses (or parameter values) of interest. The mathematical structure of 
statistical evidence, and its qualitative and quantitative properties, are analyzed 
by application of (1) the mathematical results of Part A, which show that condi- 
tional experimental frames of reference (in the mixture sense) exist and are 
recognizable much more widely than has previously been realized; and (2) a 
single extra-mathematical proposition which many statisticians seem inclined to 
accept as appropriate for purposes of infonnative inference, a "principle of 
conditionality" which asserts that any outcome of any experiment which is a 
mixture of component experiments should be interpreted in the same way as if 
it were an outcome of just a corresponding component experiment (with the 
overall mixture structure otherwise ignored). This analysis establishes the likeli- 
hood function as the appropriate basis from which statistical inferences can be 
made directly without other reference to the structure of an experiment. For the 
numerical values of the likelihood function, this analysis provides direct inter- 
pretations in terms of probabilities of errors. These probabilities admit frequency 
interpretations of the usual kind, but they are not in general defined with refer- 
ence to the specific experiment from which an outcome is obtained: they express 
intrinsic objective properties of the likelihood function itself, which this analysis 
shows to be appropriately relevant and directly useful for purposes of informa- 
tive inference. The relations of this analysis of problems of informative inference 
to problems of testing statistical hypotheses, decision-making, conclusions, and 
Bayesian treatments of inference problems are discussed briefly. 

Received July 30, 1960; revised October 11, 1960. 
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Generalizations of these mathematical results and their interpretations for 
problems involving more than two simple hypotheses will be given in a following 
paper. 

A. MATHEMATICAL DEVELOPMENTS 

1. The canonical form of a binary experiment. We consider a given experi- 
ment E, assuming that questions of experimental design, including those of 
choice of a sample size or possibly a sequential sampling rule, have been dealt 
with, and that the sample space of possible outcomes x of E is a specified set 
S = {x}. We assume that each of the possible distributions of X is represented 
by a specified elementary probability function fi(x): if the hypothesis Hi is true, 
the probability that E yields an outcome x in A is 

(1.1) Pi(A) = Lfi(x) dj(x), 

where A is a specified o-finite measure on S, and A is any measurable set. We 
assume until otherwise stated that there are only two possible distributions, so 
that i = 1 or 2. Such experiments will be termed binary experiments. 

Discussions of statistical inference problems concerning binary experiments 
usually specify at the outset that the problem under consideration is that of 
testing the simple hypothesis H1 against the simple alternative H2, or that of 
making one of two specified decisions, on the basis of an observed value of X. 
These discussions seem to assume tacitly that such formulations are the only 
ones of possible interest, or at least the only ones sufficiently definite to allow 
satisfactory theoretical treatment and objective practical application. (We do 
not consider here formulations in which it is assumed that there exist probabilities 
of the hypotheses themselves, Prob (Hi), i = 1, 2, in some sense.) We begin 
however with a less formal but broader specification: the general goal is to make 
inferences from an observed value of X to the hypotheses. Our purpose is to 
show that this broader specification suffices to guide a useful analysis of the 
mathematical structure of any given experiment E, an analysis which exhibits 
some new mathematical properties of experiments that are of intrinsic interest 
and relevance for statistical inference in general, and throws some new light on 
more specialized formulations of inference problems. 

For any given binary experiment E, let 

(1.2) r = r(x) = log [f2(X)/fl(X) I 

It is well known that r is a (minimal) sufficient statistic. Let 

(1.3) Fi(r) = Prob [r(X) < r I H], i = 1, 2. 

In general r(X) is a generalized random variable in the sense that it may assume 
infinite values with positive probability under one or both hypotheses; corre- 
spondingly, in general F1 and F2 are generalized cumulative distribution func- 
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tions (c.d.f's.). The pair of distributions F1, F2 of r may be taken as a canonical 
form of any binary experiment E. 

A canonical form which is more convenient for many purposes is obtained as 
follows: Let 

(1.4) u(r, z) = zFi(r) + (1 -z)Fl(r-), 

for 0 < z ? 1 and -0oo r oo. If Z is an auxiliary randomization variable, 
that is, a random variable having under each hypothesis the same uniform 
distribution on the unit interval, 0 < Z < 1, independent of X, then U = 
u(r(X), Z) may be called the continuous probability integral transform of 
R = r(X), since 

(1.5) Prob (u(R, Z) 5 u I Hi) = u, for O? u < 1. 

Since r is a function of u(r, z), the latter is a sufficient statistic. For each u, let 
v(u) = Prob [u(R, Z) < u i H2], 0 < u < 1. The function (c.d.f.) v(u) may 
be regarded as the canonical form of the given binary experiment E as was 
pointed out in [1]. (For each u, by the fundamental lemma of Neyman and 
Pearson a best test of size 1 - u is one which rejects H1 when u(r, z) exceeds u; 
with this test, the probability of a Type II error is v(u). The latter is well known 
to a convex function of u.) Since v(u) is convex, it is continuous, except possibly 
at u = 1, where v(1) = 1 always. 

Conversely, each convex c.d.f. v(u) on the closed unit interval is the canonical 
form of some binary experiment. For if v(u) is convex and v(O) = 0, v(1) = 1, 
let f2(u) denote v'(u), the right derivative of v(u), for each u < 1, and let 
f2(1) = oo. Letf1(u) = 1, 0 - u < 1. Then the binary experiment E represented 
by the elementary probability functions f1(u), f2(u) (with respect to Lebesgue 
measure) has the canonical form v(u), as is readily verified. 

It is often convenient to consider a binary experiment as represented by the 
graph of its "v(u) curve," with the latter supplemented by a vertical line-seg- 
ment if necessary so as to give in all cases a graphically-continuous convex curve 
from (0, 0) to (1, 1). 

2. Simple binary experiments. A binary experiment with v(u) u is trivial 
in the sense that its sufficient statistic r = r(x) has the same distribution under 
each hypothesis. Such experiments will be called uninformative, and all other 
experiments will be called informative. 

A binary experiment will be called simple if its sufficient statistic r assumes at 
most two distinct values, rl < r2, (with exceptions on sets of points x having 
probability 0 under each hypothesis). A binary experiment which is not simple 
will be called composite. In an informative simple binary experiment, we have 
r1 < r2, each value having positive probability under at least one hypothesis. 
In any such experiment, let 

(2.1) pi = Prob [r(X) = r2 I H], and qi = 1 - pi, for i = 1, 2. 
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Then 0 < pi < p2 < 1, or 0 ? q2 < q1 ? 1; the point (q1, q2) characterizes any 
such experiment, since its v(u) curve consists of two line segments connecting 
successively the points (0, 0), (q, , q2), ( 1, 1 ) . 

Conversely, every such v(u) curve, or every point (qi, q2) with 0 < q2 < 
q1 < 1, characterizes an informative simple binary experiment. For consider any 
such pair and the experiment E consisting of a single Bernoulli trial such that 

(2.2) qi = Prob [X = 0 | Hi], and 

pi=1-qi=Prob[X= 1Hi], i=1,2. 

Its sufficient statistic is 

(2.3) r(x) 
r= log 

(q2/ql) 
if x = 0, 

r2 log (p2/Pl) if x = 1. 

Any such experiment may be characterized alternatively by a point (ri, r2) 
satisfying -0oo r1 < 0 < r2 < oo, that is by a point in the second quadrant 
of the (r1, r2)-plane excluding the coordinate axes but including all points with 
one or both coordinates infinite. 

A third representation of any informative simple binary experiment is given 
by the ordered pair (L1, L2) of possible values of the likelihood ratio statistic: 

(2.4) Li = q2/ql =erl L2 = p2/pl = er2 0 < Li < 1 < L2 < oo, 

so that q1 = (L2-1 )/(L2- L1) and q2 = Liql. A fourth representation is given 
by considering the only nontrivial nonrandomized best test of H1 against H2, 
which rejects H1 just when r(x) = r2 ; the probabilities of errors of Types I and 
II respectively are (a, A) = (Pi, q2), which satisfy a + x < 1. A fifth useful 
representation of any such experiment is by means of a stochastic matrix: 

(2.5) E= ql P 

An uninformative simple binary experiment is represented by (r1 , r2) = (0, 0), 
or by (L1, L2) = (1, 1), or by (ql, q2) = (qi, ql) for any q , or by (a, A) 
(a, 1 - a) for any a. 

EXAMPLE 1. 

"One toss of a coin" experiments. As indicated above, every simple binary 
experiment is equivalent to an experiment consisting of a single observation on 
a Bernoulli random variable X with possible values 0 or 1 only. 

EXAMPLE 2. 
A Wald sequential probability ratio test between two simple hypotheses, in 

special cases including certain tests on a binomial parameter (the cases in 
which there is "no excess at termination"), is based on a sequential sam- 
pling rule which allows only two values for the likelihood ratio statistic, or 
for r(x). In many other cases, such tests might be called approximately simple 
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in the sense that under each hypothesis the probability of r(X) - ri or r2 is 
very near unity. 

EXAMPLE 3. 

Communication channels. In communication theory (information theory), a 
communication channel (without memory) is any structure which can receive 
at one point any one of a specified set of "input signals" and deliver at another 
point one of a designated set of "output signals", the respective probabilities of 
the latter depending only upon the selected input signal. In the case of just two 
input signals, which we may denote by H1, H2 , we have a binary channel; we 
may denote the set of possible output signals by S = {x}, and the respective 
probabilities of subsets A of S by Pi(A), i = 1, 2. Thus each such communication 
channel is mathematically equivalent to a binary experiment, and conversely. 
If x = 0 or 1 only, we have a simple binary ("two-by-two") channel, equivalent 
to a simple binary experiment. Here (a, A) describe completely the structure of 
"noise" in the channel: a is the probability that transmission of H1 will lead to 
receiving of x = 1, and A is the probability that transmission of H2 will lead to 
receiving of x 0. 

Noisy channels in series. It is convenient to introduce some techniques re- 
quired below as an elaboration of the present example. Let channel E have 
inputs H1 , H2 , outputs x = 0 or 1, and noise parameters (a, A). Let channel E' 
have inputs x = 0 or 1, outputs x' = 0 or 1, and noise parameters (a', dl'). Then 
the channel E* consisting of E followed by E' has inputs H1 , H2 , and outputs 
xi = 0 or 1. It is useful to write E* = EE', since if 

(2.6) E= P2) and E'_ q2l Pi) 
22 P2 22 p2 

then 

E* = 2q Pi ql Pi' EE' 

(2.7) q2 P2 q2 P2 

ql q, + Pi qj qlP, + P - P2 ql Pi 

( ql + p2 q2 q2pl + P2 P2 2 P2 

The noise parameters of E* are 

(2.8) (?*' p3*) = (pi , 2q ) 
=' ((1 - a)a' + a(1 a-'),t3( -') + ( 1-)a'). 

The other representations of E* include 

Ll* a q2*/ql= (q2q' + p2q2q)/(qlq' + pl2q), 

(2.9) and 

=P2*/P;* = (q2pl + p2p2)/(qlpi + plp2). 
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If q2 = 0 but p' > 0, we may say that E' has noise affecting only the transmitted 
signal x = 0; in this case we may also say that E' has noise which degrades only 
the received signal x' = 1, since the received signal x' = 0 is known with certainty 
to follow from a transmitted signal x = 0, while a received signal x' = 1 is 
known to be possible following either transmitted signal x = 0 or 1. In such a 
case we have Li = q2l/q L1 and 

(2.10) L2 = (p2 + Plq2)/(Pl + Plql) < P2/Pl = L2 

(assuming Pi < P2, the remaining case being trivial). Similarly if pl = 0 but 
I 

> 0, E' has noise affecting only x = 1 and degrading only x' = 0, and L2* = 

P2/Pl L2 

(2.11) L* = (q2 + q2P2)/(ql + q2pl) > q2/ql =Li 

(assuming the nontrivial case pi < P2). It is easily verified that every channel E' 
is equivalent to a pair of channels in series, E = E1 E2, where E1 has noise 
affecting at most the signal x = 1, and E2 has noise affecting at most the signal 
x = 0. 

It follows that for any simple binary channels E, with parameters (L1, L2), 
and E', the channel E* = EE' has parameters (L* , L2*) satisfying L1 < L* < 
1 < L2 < L2 . And conversely, if E and E* are channels with parameters satisfy- 
ing these inequalities, then there exists a channel E' such that E* = EE'. Since 
ri = log Li, these inequalities may be written 

(2.12) ri _ r* < 0 < r* < r2. 

EXAMPLE 4. 
Significance Tests. In every binary experiment, if the outcome x is to be re- 

ported only by a conclusion of the form "reject H1" or "accept H1" based on a 
specified significance test with error-probabilities (a, A), then the over-all pro- 
cedure is formally a simple binary experiment, with L1 = i /(1 - a), L2 = 

(1 - ()/a. 

3. The partial ordering of binary experiments. In the theory of comparison 
of experiments [2], an experiment E is called at least as informative as another 
experiment E* if and only if it is possible to use E, possibly supplemented by use 
of an auxiliary randomization variable, to construct an experiment equivalent 
to E*. (We depart from the usual terminology, in which "more informative 
than" is used so as to include the case of equivalence.) 

To denote that E is at least as informative as E*, we write E > E* or E* < E. 
It is also convenient to denote this relation by writing that E contains E*, since 
this terminology has been used in connection with communication channels [3]. 

If E ? E* and E* > E, we write E = E* to denote that E is equivalent to E*. 
We write E # E* to denote that E and E* are not equivalent. If E > E* and 
E # E*, we write E > E* to denote that E is more informative than E*. If neither 
E ? E* nor E* > E holds, E and E* are not comparable. 
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It is well known that, for binary experiments E: v(u) and E*: v*(u), we have 
E ? E* if and only if v(u) < v*(u) for 0 ? u < 1. In the case of simple binary 
experiments E: (r1 , r2) and E*: (rr , r2), it is readily verified that this condition 
specilizes to: E ? E* if and only if ri < r < r2* < r2 ; that is, if and only if the 
interval (r, , r2) contains the interval (rl, r2*). 

The partial ordering of simple binary experiments determined by the relation 
> is conveniently represented graphically in the (r1, r2) plane. E > E* denotes 
that (r , r2*) is closer than (r1, r2) to (0, 0) in the sense that at least one of its 
coordinates is closer to 0 and neither is farther. In a case of non-comparability, 
one of the points (r1, r2), (rl , r2*) lies to the upper-right of the other. 

Any finite or infinite set of experiments will be called strictly ordered if, of 
every pair in the set, one is more informative. Each such set of experiments 
corresponds to a subset of the points (r1, r2) of some graphically-continuous 
nonincreasing curve from (- oo, oo) to (0, 0). Any such set of experiments has 
a paramatric representation (r1[d], r2[d]), with r1[d] nondecreasing and r2[d] non- 
increasing in d, where d has a specified range. 

4. Mixtures of simple binary experiments. If various experiments are possible 
for a given inference problem, and if one of these is selected for use by means 
of a specified random device unrelated to the hypotheses, the over-all procedure 
is called a mixture of experiments, or a mixture experiment. Since each simple 
binary experiment is represented by a point (r1 , r2) in the range described above, 
the various (generalized) cumulative distribution functions G(r1, r2) on that 
range correspond to the possible mixtures of simple binary experiments. For any 
such distribution G, we write EG to designate the (mixture) experiment con- 
sisting of the selection of a simple experiment (ri, r2) by use of a random device 
corresponding to G, and the observation of the outcome of one trial of the 
selected experiment; the simple experiments will be called components of EG . 

Any such mixture experiment EG has the generic sample point x = (r1 , r2 , r3), 
where (r1, r2) is the selected simple experiment and r3 is the observed outcome 
of that experiment, r3 = ri or r2. To determine the sufficient statistic r(x) = 
r(r1 , r2 , r3) of such a mixture experiment, let fi(r1, r2 , r3) denote the probability 
or probability density of (r1, r2 , r3) if Hi is true, i = 1, 2. 

The conditional distributions of R3, given (R1, R2) = (r1, r2), are 

Prob[R3= r I (r1, r2), H] = qi; and if r2 > ri, 

Prob [R3 =r (r1,r2),Hi] = pi= 1-qi, = 1,2, 

where qi = qi(ri , r2) are determined as above by r1 = log (q2/ql), r2 = log(p2/p,). 
If r1 = r2 = 0, then R3 0, and we may take pi = p2 = 1. Hence the marginal 
probability or probability density of (r1 , r2) is 

(4.2) fi(r1 r2)- f(O,0 ,0 ,), if rl = r2 = 0, 

fi(r1, r2, r)qi + fi(rl, r2, r2)pi, if r1 < r2, 
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for i = 1, 2. However fi(ri, r2) = f2(r1, r2)(a.e., H1 and H2), since the distribu- 
tion of G of (R1, R2) is independent of the hypotheses. Hence we can write 

ff(O, O) if rl = r2 = r3 = O, 

(4.3) fi(ri, r2 , r3) = ffi(ri , r2)qi if r3 = ri < r2, 

(fi(ri, r2)Pi if r3 = r2 > ri, 

for i = 1, 2. Hence the sufficient statistic of Ea, an arbitrary mixture G(r1, r2) 
of simple binary experiments (r1, r2), is 

(4.4) r(x) = r(ri , , r3) = log [f2(r1, r2, r3)/f1(r, , r2, r3)] = r3 . 

EXAMPLE 1. 

Binomial mean. Consider the five simple binary experiments Eo, E1, ... E4 
defined by the respective pairs of parameters (L1, L2) given in Table I below. 

TABLE 1 
Some simple binary experiments 

Experiment (PI , P2) (Li, L2) (a,) 

Eo (.5, -5) (,) (.5, .5) 
El ' (.0588, .9412) (1/16, 16) i (.0588, .0588) 
E2 I (.0039, .9961) i (1/256, 256) (.0039, .0039) 
E3 (.0037, .9377) (1/16, 256) (.0037, .0623) 
E4 ' (.0623, .9963) I (1/256, 16) (.0623, .0037) 

Some distributions defining mixtures of the above experiments 

G 'G Gc,I < c <I 

go = (4)(.2)2(.8)2 .1536 go = go .1536 I go = go 
gl = (1)(.2)(.8)3 + (3)(.2)9(.8) .4352 gl = 0 g1 = (1 - C)gi 

1 2 2 ( 92 = (0)(.8)4 + (4)(.2) 4 .4112 9 = =(1 -c)92 

93 = 0 g3 =(1-go)/2 .4232 93 = Cg3 
I 1 C 1 

94=O = 9 .4232 g4 = Cq4 

The table gives also the parameters (pl, P2) and (a, i3) of these experiments to 
four decimal accuracy. The table also gives a number of discrete distributions 
G' = Gc(ri, r2): for each c, 0 < c < 1, a mixture experiment EGc is defined by 
the five probabilities g. = Prob (Ei), i = 0, 1, * 4. It is convenient to use the 
notation goEo (G g1El G * G * 4E4 to denote the operation of mixing the experi- 
ments Eo, ** * E4 with respective probabilities go, *** q4. We can then write, 
for each c, 0 < c < 1, 

4 

(4.5) Eac = x gEi 
i=O 
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Consider next the binomial experiment EB consisting of four observations, 
with parameter 0 = .2 or .8: 

(4.6) fi(x) = (4)(.2)z(.8)4 , f2(X) (4)(.8)x(.2)4z, x = 0, 1, 4. 

The following assertion can be verified by simple direct calculations: The mixture 
experiments EGc defined above are equivalent to one another, and each is equiva- 
lent to EB. That is, EB = EGc for each c, 0 < c < 1. The v(u) curve of EB is 
easily determined from the given binomial distributions fi(x), and consists of 
the line segments between the successive points (given to four-decimal accuracy): 
(0, 0), (.4096, .0016), (.8192, .0272), (.9728, .1808), (.9984, .5904), and (1, 1). 
It may be noted that only one of the above distributions Gc represents a mixture 
of strictly ordered simple binary experiments, namely Go _ G. 

EXAMPLE 2. 
Normal mean. The symmetric simple binary experiments (r1, r2) are those for 

which ri = -r2 . Any mixture G(r1, r2) over this strictly ordered class of experi- 
ments can be represented conveniently by the marginal c.d.f. of R2 under G, 
which we denote by G(r2). Let 

(4.7) G(r2) = 4(r2 - ') - (-r2-), for 0 < r2 < o0, 

where (u) = fi'4O(u) du and +(u) - (27r)-1exp (-2u2). Then 
r 2 

(4.8) G(r2) = J 9(y) dy, 

where 

g(y) = k(y - 1) + (-y -1) 

Under hypothesis Hi, the sufficient statistic r3 of the mixture experiment EG 
has the density function 

(r2)qi(-r2 , r2) if r3 < 0, 

(4.9) fi(r3) = (r2)pi(-r2 , r2) if r3 > 0, 

g(r2) if r3 = 0, 

where r2 = jr3j, qj( -r2 , r2) = (er2 - 1)/(er2 - e-r2), q2(-r2, r2) 

e`r2ql(-r2 X r2), and pi(-r2 , r2) = 1-qi(-r2 r2), for i = 1, 2. Upon simplifica- 
tion we find that f1(r3) = 4(r3 + 2), f2(r3) = 4 (r3 - 2); thus the sufficient 
statistic r3 has under each hypothesis a normal distribution with unit variance, 
with respective means- - and 2. 

Consider next the experiment EN consisting of a single observation on a 
normally distributed random variable X, having unit variance and, under the 
respective hypotheses, means - - and 2. It is well known that for this experi- 
ment the sufficient statistic is r(x) _ x, which has under the respective hypothe- 
ses the same (normal) distributions found in the above mixture experiment EG 
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for its sufficient statistic r3. It follows that the two experiments are equivalent: 

EN= EG. 

5. Decomposition theorem for binary experiments. In the preceding examples, 

two binary experiments typical of those treated in mathematical statistics were 
shown to be mathematically equivalent to certain mixtures of specified simple 
binary experiments. The following theorem shows that every binary experiment 
can be decomposed in this sense into simple components. 

THEOREM. Each binary experiment is equivalent to a mixture of strictly ordered 

simple binary experiments. 
PROOF: 

1. Let v(u) be an arbitrary convex c.d.f. on the closed unit interval, v(O) = 0, 

v(1) = 1, representing as above any given binary experiment E. E has the 
sufficient statistic u with distributions 

u 

(5.1) Prob {U < u I Hi} = u du, Prob {U < u I H2} = V(U), 

0 < u ? 1; 

and for u < 1, v(u) = fJo f2(u)du, where f2(u) v'(u) is the right-derivative of 
v(u). 

Let h(u) = u - v(u) and h* = sup{h(u) I0 < u < 1}. We have h* > 0, 

except in the case v(u) _ u, 0 < u < 1, which is the uninformative experiment 
(ri, r2) = (0, 0) for which the conclusion of the theorem holds trivially. Assum- 
ing h* > 0, the function h(u) is concave, h(O) = h(l) = 0, h(u) > 0 for 0 < 

u < 1; h(u) is continuous, except possibly at u = 1 corresponding to a possible 
discontinuity of v(u) at u = 1. If v(u) is discontinuous at u = 1, we define h(l) 
as multiple-valued, having all values in the closed interval [1 - v(l1-), 1]; 
then in all cases h(u) is a graphically-continuous concave curve on the closed 

unit interval. The right-derivative of h(u) is h'(u) 1 - v'(u), for u < 1. 
For each h, 0 < h < h*, the equation h(u) = h has two distinct roots which 

we designate ul(h) < u2(h). The equation h(u) = h* is satisfied on a closed 
interval or at a single point u, which we designate by ul(h*) < u < u2(h*), 

ui(h*) < u2(h*). ul(h) is continuous, convex, and strictly increasing in h, 
0 < h ? h*. u2(h) is continuous, concave, and nonincreasing; it is strictly de- 

creasing in h, for 1 - v(1-) < h ? h* (that is, for 0 ? h < h*, unless v(u) is 

discontinuous), and u2(h) = 1 for 1 - v(1-) _ h < h*. Let ui(h) denote 

the respective right-derivatives of ui(h), for 0 < h < h*; then 

(5.2) ui(h) = [1 - f2(ui(h))71 for 0 < h < h*, i = 1, 2. 

Corresponding to each h, 0 _ h < h*, we define the simple binary experiment 

(5.3) Eh: (r1[h], r2[h]) = (log f2(ui(h)), log f2(u2(h))). 

Corresponding to h = h*, we take (rl[h*], r2[h*]) = (0, 0). These experiments 
are clearly strictly ordered. 
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Let 

1- (u2(h) - ui(h)), for 0 < h < h*, 

(5.4) G(h) = for h= h*. 

Let g(h) = ul (h) - u2(h), for 0 < h < h*. Then G(h) = fhg(h)dh for 0 ? 
h <h*. 

2. We define the experiment EG as the mixture G = G(h) of the strictly ordered 
simple binary experiments EA: (ri [h], r2[h]), 0 < h ? h*. We proceed to prove 
that E = EG , by proving that v(u) = VG(U), 0 < u < 1, where VG(U) is the 
canonical form of EG. 

For each h < h*, the simple experiment Eh: (r1[h], r2[h]) is equivalent to an 
experiment consisting of one observation on the random variable Uh having the 
following distributions: 

Prob { Uh = ul(h) i Hi} = qi(h) 

Prob {Uh = u2(h) I Hil = pi(h) = 1 -qi(h), 

where qi(h), i = 1, 2, are determined by 

ri[h] = log [q2(h)/ql (h)], r2[h] = log [p2(h)/pl(h)]. 

For h = h*, the experiment (ri[h*], r2[h*]) = (0, 0) is equivalent to the trivial 
experiment consisting of one observation on the random variable Uh* which has, 
under H1 and H2 , the same uniform distribution on the interval [ul(h*), U2(h*)]. 
Let EK be the experiment in which one observation h is taken on an auxiliary 
randomization variable H with the c.d.f. G(h) defined above, independent of 
the hypotheses, followed by one observation on the corresponding random 
variable Uh whose distributions under H1 , H2, were given above. Each possible 
outcome of this mixture experiment has the form (h, Uh) where h is the observed 
value of H and uh is the observed value of Uh . Clearly ERJ = EG. 

For different values of h, the ranges of Uh are disjoint; hence the observed 
value h is a function of the observed value uk, and the latter is a sufficient statis- 
tic for EG . The distributions of the statistic Uk are those of the random variable 
UH, which are determined as follows: Let Ws(u) = Prob I U, < u I Hil, 0 < 

u < 1, i = 1, 2. We have Wi(1) = 1; and since Prob {H = 0} = G(O) = 0, 
Wi(O) = O, for i = 1, 2. For O < u < ul(h*), we have 

u 

(5.6) Wi(u) = wi(u) du, i = 1,2, 

where 

wi(u) = g(h(u))qi(h(u))/u (h(u)) 

- [u (h(u)) - u'(h(u))]qi(h(u))/u (h(u)). 
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Hence 

Wl(u) = [1- (h())/u(h(u))] 
* [f2(u2(h(u)) - 1]/Jf2(u2(h(u))) - f2(u1(h(u) ))]. 

We have ui(h(u)) u, and for brevity we write here u2 for u2(h(u)), for 0 < 
u< ui(h*). Thus 

(5.8) Wi(U) = (1-[1 - f2(u)]/[l - f2(u2)I) 

* 12(U2) -1I/2(U2) - f2(u)] = 1. 

Since q2(h(u)) = f2(u)qi(h(u) ), we have, for 0 < u < ui(h*), 

(5.9) W2(U) = f2(U). 

In the same way the same formulae for wi(u) can be verified for the range 
u2(h*) < u < 1. If Prob {H = h*} = 0, ui(h*) = u2(h*), and 
Prob { UH = ul(h*) I Hi} = 0 for i = 1, 2. If Prob {H = h*} > 0, ul(h*) < 
u2(h*), and by definition we have, for ul(h*) < u < u2(h*), wl(u) = w2(u) _ 
f2(u) 1.ThusvG(u) = f 'f2(u)du = v(u) for 0 < u < 1, and vG(l) = v(1) = 

1, completing the proof that EG = E. 

B. INFERENCE METHODS WITH PROBABILISTIC JUSTIFICATIONS. 

6. On the mathematical treatment of statistical inference problems. It is 
usual in modern mathematical statistics to restrict consideration to inference 
problems formulated on the basis of specified statistical experiments E in which 
the possible probability distributions of outcomes are described and delimited. 
(This includes problems of experimental design, which concern the appraisal 
and comparison of alternative possible experiments.) Moreover, it is now usual 
to consider such a specified statistical experiment to be the essential and basic 
frame of reference in which the relevant properties of any inference techniques 
must be defined and interpreted; for example, the basic properties of techniques 
of testing statistical hypotheses, and of related estimation techniques, are 
various error-probabilities, each defined directly as a probability in a specified 
experiment E, and interpreted in terms of relative frequencies of errors in con- 
ceptually-possible repetitions of E. Inference problems and techniques as they 
may be discussed outside such frames of reference are usually considered vague, 
and lacking in objectivity and usefulness. 

The preceding sections have treated the mathematical structure of statistical 
experiments E in the binary case, and have left aside the remaining aspects of an 
inference situation, which include 

(a) the conclusions or decisions among which a choice must be made on the 
basis of an observed outcome x of experiment E; 

(b) the consequences of each possible choice, on the- respective assumptions 
that each of the simple hypotheses is true; and 

(c) the evaluations of such consequences by the individual in the inference 
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situation; his purposes; and possibly his prior opinions or information concern- 
ing the hypotheses. 

The specification of these additional aspects of an inference situation in 
appropriate and formal terms is often difficult or problematical, even when all 
of the general features of the inference situation are quite clear. 

If at least aspect (a) can be specified definitely, as for example that just two 
conclusions or decisions are allowed, then it is possible to give an analysis of the 
inference problem having general usefulness in connection with various formal 
or informal specifications of the remaining aspects (b) and (c). 

7. Tests of statistical hypotheses; two-decision problems. If it is specified 
that one of just two conclusions or decisions must be adopted on the basis of an 
outcome of E, with specified v(u), we may denote by di that conclusion or 
decision which would be more appropriate if H1 were true, and by d2 the alterna- 
tive, which may be called "reject H1." Then each (Lebesgue measurable) 
function d = d(u), taking values di or d2 only, represents a possible inference 
rule, whose relevant properties are the error-probabilities 

a = ad = Prob (d(U) = d2 H1), 

(7.1) and 

( = 3d =Prob (d(U) = d H2). 

Foreacha,O < a < 1,letda(u) = d2ifu > 1 -aletda(u) = diifu < 1-a. 

Then the error-probabilities of da(u) are a and 

. =([1 a]), for O < a <1 
(7.2) 1 = 0 

v(a) 
= 

(1-), for a = 0. 

Since the likelihood ratio statistic of E is v'(u), a non-decreasing function of u, 
we have by the fundamental lemma of Neyman and Pearson that da(u) is a 
best test of H1 against H2 of significance level a. 

Let a' = min [a I 1(a) = 01 1 - max [u I v(u) = 0]. The inference func- 
tions da(u), 0 < a < a', constitute a minimal essentially complete class of 
(admissible) inference functions. For the problem considered, on the basis of 
the given experiment E, no other inference functions need be given considera- 
tion; but no further analysis or simplification of the problem of choosing one of 
these inference functions can be given except in relation to formal or informal 
specifications of the aspects (b) and (c) of the inference situation referred to in 
the preceding Section. 

8. Multi-decision problems; tests based on critical levels. To illustrate most 
simply that even with a binary experiment it is sometimes appropriate to allow 
more than two possible decisions (or conclusions), consider the case in which 
three decisions may be allowed. Assume that decision di would be the most 
appropriate of the three possibilities, and that d2 would be the least appropriate, 
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if Hi were true; and that di would be least appropriate, and d2 most appropriate, 
if H2 were true; the remaining decision, d3, is then more appropriate than d2 if 

Hi is true, and more appropriate than di if H2 is true. An example would be a 
situation of industrial acceptance sampling in which it is assumed that each lot 
of items contains either a certain small proportion of defective items (HI) or a 
certain higher proportion of defective items (H2); and the possible classifica- 
tions are: di, "apparently high quality"; or d2, "apparently low quality"; or 
d3, "indeterminate quality". Another type of example is represented by desig- 
nating di as the conclusion "reject H2 (in favor of HI)," and d2 as the conclusion 
"reject H1 (in favor of H2)," and d3 as the conclusion "reject neither hypothesis" 
or ''no conclusion." 

Any inference procedure here can be represented by some function d(u), 
defined on the unit interval, taking values di, d2 or d3 . The relevant properties 
of any such function are just the four error-probabilities as, AXi, i = 1, 2, where 

al = Prob [d( U) = I HI] = the probability of a "major Type I error," 

a2 = Prob [d(U) = di I HI] = the probability of a "minor Type I 
error," 

(8.1) 1I = Prob [d(U) = H 112] = the probability of a "major Type II 
error," and 

12 = Prob [d(U) = d3 | H2] = the probability of a "minor Type II 
error." 

Clearly the general goal, in appraising and selecting an inference function based 
on a given binary experiment, is that each of these error-probabilities should be 
suitably small. If the function A(a) is defined as above, then for any values of 
a, and a2 such that 0 < a, + a2 < a' (no other cases should be considered), we 
have (by the Neyman-Pearson lemma) that the smallest possible value of j3I is 
i3(a, + a2), and the smallest possible value of 12 is i3(a,) - f3(a, + a2); and that 

these are the error-probabilities of the admissible three-decision function: 

Y d1, if u< 1 -a]-a2, 

(8.2) d(u)= Xd3, if 1-al-a2 U < -al, 

Ld2, if 1 -a < U. 

Comments like those of the preceding Section apply to the problem of choice of 
a particular inference function of this form. Any inference or decision function 
of this form has the probabilistic justification that its four error-probabilities are 
"jointly minimum" in the sense that no one of them could be reduced except by 
an increase in one or more of the others. The policy of using such an inference or 
decision function, having suitably small error-probabilities, is thereby justified 
in the sense that in many independent applications, under respective hypotheses, 
the relative frequencies of the more and less serious errors of various kinds will 
tend to be correspondingly small. 
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The preceding discussion can be immediately generalized to allow any number 
of possible decisions or conclusions, simply ordered according to their decreasing 
appropriateness if H1 is true (and increasing appropriateness if H2 is true); an 
infinite number (not necessarily countable) can be allowed. In all such cases, 
the admissible inference or decision functions, having probalistic justifications 
of the kind illustrated above, will have a form in which larger values of the out- 
come u tend to indicate conclusions or decisions which are more appropriate 
when H2 is true. 

An inference technique which antedates modern mathematical statistics, and 
which remains in wide use, is that based on the critical level associated with an 
observed outcome: When an appropriate statistic has been selected, for example 
the statistic u, the critical level is defined as the probability, under a hypothesis 
H1 being tested, of a value of U at least as large as the value observed: 

(8.3) a(u) = Prob [U > u j H1]. 

Observed values of a(u) more or less close to 0 are customarily interpreted as 
representing more or less strong evidence for, rejection of H1 ; one convention of 
interpretation, which is clearly rather schematic, applies the term "significant" 
to outcomes a(u) < .05, and the term "highly significant" to outcomes a(u) < 
.01. Leaving aside interpretations which ascribe to a numerical value of a (u) some 
intrinsic meaning as a quantitative measure of strength of evidence against HI 
in an outcome u, there remains the qualitative simple ordering of conclusions 
with those favoring H2 more strongly corresponding to smaller values of a(u). 

This latter qualitative part of the customary interpretation of various possible 
values of the critical level, considered in the context of a specified experiment, 
has the kind of probabilistic and frequency justification described above. In 
addition, the numerical values of a(u) have probabilistic interpretations related 
to various errors of Type I; for example, any interpretation of outcomes a(u) < 
.01 as "strong evidence against H1" will be highly inappropriate if H1 is true, 
but will be made with probability only .01 when H1 is true. However techniques 
based upon critical values do not incorporate systematic consideration of error- 
probabilities under H2 . 

While the theory of Neyman and Pearson introduced the essential comple- 
mentary concept of errors of Type II, the formal development and the applica- 
tions of this theory have typically been based on fixed-level formulations, and 
have typically treated only two-decision problems. The preceding discussion 
shows that a simple adaptation of the standard fixed-level theory and methods 
gives multi-decision and corresponding inference methods which have the 
flexibility and intuitive appeal of the traditional critical level technique, and 
also an appropriately complete objective probabilistic appraisal and justification 
based on consideration of probabilities of errors of all kinds and degrees, in the 
context of a specified statistical experiment. 
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C. INFERENCE METHODS WITH INTRINSIC JUSTIFICATIONS. 

9. Informative inference. A traditional and basic type of application of tech- 
niques of mathematical statistics, including techniques described in the preced- 
ing two sections, occurs in situations of empirical scientific research. In such 
situations, besides problems of inference or decision-making which bear upon 
specific practical purposes, or specific research purposes such as drawing working 
conclusions and planning further research, a broader inference problem is often 
recognized and dealt with. The latter problem is that of recognizing, appraising, 
and sometimes reporting in the scientific or technical literature, in appropriate 
objective terms, the general character of experimental results as they are relevant 
to statistical hypotheses (or values of unknown parameters) of interest. This 
problem may be described as that of recognizing, and reporting appropriately, 
statistical evidence relevant to statistical hypotheses of interest. For brevity, we 
use the term informative inference to refer to this problem and to methods for 
dealing with it. 

In typical research situations, when a test of a statistical hypothesis (appropri- 
ately valid and efficient) indicates rejection of that hypothesis, besides the 
conclusions or decisions which the experimenter may reach it is often recognized 
that the experimental results may be of more general interest and value; and a 
description of the testing procedure and its outcome are often reported to indicate 
in objective terms the character of the results as evidence relevant to hypotheses. 
The reporting of estimates of parameters of interest with indicators of their 
precisions, in the scientific literature, typically serves the same broad and basic 
scientific function. In this function, the methods of mathematical statistics 
serve as techniques for the evidential interpretation of experimental outcomes. 

The basic terms of such interpretations are usually taken to be certain error- 
probabilities associated with the testing or estimation techniques used. (The 
precision of an estimator can typically be interpreted in terms of probabilities 
of estimation-errors of various magnitudes.) In fact the general nature of statis- 
tical evidence, relevant to hypotheses of interest, is commonly recognized, 
expressed, and dealt with, in a generally clear and effective way, in terms of 
such error-probabilities. Our purpose in the following sections is to clarify the 
mathematical structure of statistical evidence and the terms appropriate for its 
description. 

10. Symmetric simple binary experiments. It is convenient to refer to the 
outcome r2 of any simple binary experiment (r1, r2) as "positive," and to the 
outcome r1 as "negative." A simple binary experiment will be called symmetric 
if r1 = -r2 , that is, if the experiment is of the form (-r2 , r2); in the present 
section we consider only experiments of this form. Each such experiment is 
characterized by a number r2, 0 < r2 _ oo. This class of experiments is simply 
ordered, by the parameter r2, according to the relation "more informative than" 
defined in Section 3 above. 
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There is no difficulty in recognizing the appropriate evidential interpretations 
of outcomes of the extreme cases in this class of experiments. The completely 
informative experiment (- oo, oo ) gives outcomes each of which can naturally 
be called completely informative: the outcome r = oo supports the certain 
inference that H1 is false and H2 is true. An alternative interpretation, which is 
equivalent for all purposes of application, is: the inference that H2 is true is 
practically certain, in the highest possible degree. Similarly, the outcome r = 
- oo supports the certain inference that H1 is true. The uninformative experi- 
ment (0, 0) gives outcomes each of which can naturally be called (completely) 
uninformative: an outcome r - 0 has no relevance to the hypotheses, and there- 
fore gives no support in any degree to any inferences concerning the hypotheses. 

In any intermediate case (-r2, r2), 0 < r2 < oo, it is natural and necessary 
to attribute to the positive outcome the qualitative evidential property of sup- 
porting H2 (as against H1), and to the negative outcome the property of sup- 
porting H1. In addition to intrinsic plausibility, these qualitative evidential 
properties attributed to the possible numerical values of r, r2 or -r2, have the 
objective interpretation and justification that, under each hypothesis, the prob- 
ability that such an interpretation will be qualitatively inappropriate (the 
probabilities of a "false positive" (Type I error) and of a "false negative" (Type 
II error), in the obvious simplest testing or two-decision procedure) is equal to 

(10.1) a = a[r2] = 1/(1 + er2) < 2. 

If 0 < r2 < r2 < 
l 

o, we interpret the positive outcome of the experiment 
(-r2 , r2) as supporting H2 more strongly than the positive outcome of the experi- 
ment (-r2, r2). This interpretation is supported by the considerations that out- 
comes statistically equivalent to those of the latter experiment can be generated 
by modifying outcomes from the former experiment by the "addition of pure 
noise" unrelated to the hypotheses, in the sense of Section 3 above; and that 
a[rl] < c[r2], since a[r2] decreases from ' to O as r2 increases from 0 to 00. 

In summary, over the class of symmetric simple binary experiments, the 
function r = log [f2(x)/fi(x)] has been given an unequivocal and consistent set 
of evidential interpretations: r = r(x) is an objective, internally-consistent and 
efficient indicator of evidence relevant to hypotheses in experimental outcomes. 

11. Symmetric binary experiments. A binary experiment E, not necessarily 
simple, will be called symmetric if its canonical form v (u) is symmetric about the 
line u + v = 1; that is, if for each u, O < u < 1, we have v(l-v(u)) = 1-u. 
For any such experiment, the method of the proof of the decomposition theorem 
of Section 5 above gives a mixture experiment, equivalent to E, each of whose 
simple components has the symmetric form (-r2 , r2); as in Example 2 of Section 
4 above, any such mixture can be represented by a (generalized) c.d.f. G(r2) on 
the range 0 ? r2 < oo. For any given symmetric binary experiment E, let EG 
denote this equivalent mixture experiment. 

Since EG and E are mathematically equivalent, in particular for purposes of 
informative inference, and related questions of evidential interpretations of out- 
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comes, we can consider any outcome r of E as if it were a mathematically-corre- 
sponding outcome of EG. Each outcome of this symmetric mixture experiment 
EG has the form (-r2 , r2 , r), where r = r2 or -r2 . Since r2 is the observed 
value of a random variable having under each hypothesis the same known dis- 
tribution G(r2), the observed value r2 is irrelevant as evidence concerning the 
hypotheses. The observed value r2 determines the symmetric simple binary 
experiment (-r2, r2) which is performed; hence r2 = Irl indicates, as in the pre- 
ceding Section, just the strength of the evidence which is provided by the out- 
come r of the experiment (- r2, r2). It is possible and necessary to interpret the 
outcome r of the latter experiment in the way established in the preceding section 
for outcomes of symmetric simple binary experiments, for purposes of informa- 
tive inference, since the appropriate frame of reference for considering the evi- 
dential character of r is clearly the selected simple experiment, and the structure 
of EG is otherwise clearly irrelevant to such interpretations. 

Because of the equivalence of E and EG, and the related equivalence betwveen 
outcomes of the two respective experiments having numerically equal values r, 
we obtain from the preceding paragraph the following general conclusions: 
Given any symmetric binary experiment E, for purposes of informative inference, 
any outcome r of E must be interpreted evidentially in the same way as a numerically- 
equal outcome of a symmetric simple binary experiment. In particular, given r, the 
mathematical form of E is irrelevant for such purposes and interpretations. 

To illustrate this conclusion in concrete terms, a physical interpretation of 
Example 1 of Section 4 above may be useful. Suppose that four measurement 
instruments (or techniques of observation) are available in an investigation 
concerning two hypotheses, with each instrument giving dichotomous outcomes 
"positive" or "negative," and each instrument symmetric in the sense that it has 
equal probabi]ities a of false positives and of false negatives. Let the simple 
experiments Eo, E1, E2 defined in Example 1 represent respectively three of 
these instruments, when each is used without replication (to obtain a single 
observation). Let the fourth instrument have a = .2, and let E denote the 
experiment consisting of four independent measurements by this instrument; 
then E is the binomial experiment of Example 1. 

Let EG denote an experimental procedure in which one of the first three 
instruments is selected at random, with the respective probabilities gi given in 
the Example, and in which the instrument selected is used to obtain a single 
measurement. With this procedure, if the worthless instrument Eo happens to 
be selected, one may fairly plead victimization by rather improbable bad luck, 
and indeed one had good reason to hope for and expect selection of a more 
informative instrument; however these considerations are irrelevant to the prob- 
lem of making informative inferences from a measurement provided by Eo to the 
hypotheses; for this problem, the only relevant considerations are that the 
instrument and its measurements are strictly worthless, and that this outcome 
of the experiment EG provides, recognizably, no contribution whatsoever to the 
inference problem. 
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In terms of the binomial experiment E, the outcome x = 2 corresponds (under 
the mathematical equivalence of E with EG) to the selection of Eo (and occur- 
rence of either of its outcomes) in Es. Hence there is no reason to give the 
binomial outcome, x = 2, interpretations differing in any respect from the inter- 
pretations just described for the outcome Eo of EG . Nor is there any reason to 
consider any other aspect of the binomial model of the experiment E, for pur- 
poses of informative inference, given that r(x) = r(2) = 0, a recognizably 
(completely) uninformative outcome. 

Suppose, alternatively, that in the mixture experiment EG the most informa- 
tive instrument, E2, is by good fortune selected. Granting that the occurrence 
of such good luck is irrelevant as evidence regarding the hypotheses, it is most 
relevant to the quality or strength of inferences which may be made from a 
measurement supplied by E2 . Evidently there is no reason to qualify or weaken 
the resulting inference statements on the ground that one was not sure before- 
hand that one would have the good luck to be able to use the best possible 
instrument. Suppose that use of the selected instrument E2 gives a positive 
outcome, r = 256. Under the mathematical equivalence between E and Ea, 
this outcome corresponds to the outcome x. = 4 of the binomial experiment E 
(that is, to four positive outcomes in four independent measurements by the 
instrument having a = .2), for which we also (necessarily) have r(x) = 256. 
It follows that the outcome x = 4 of the binomial experiment E should be inter- 
preted in exactly the same way, as evidence relevant to the hypotheses, as if it 
were a positive outcome obtained in a single measurement by an instrument E2 
having probability a .0039 of false positives and of false negatives. The 
numerical value r = log (1 - a) /a = log 256 serves, by definition, as a compact 
abbreviation for such an evidential interpretation of the outcome x = 4. Analo- 
gous interpretations apply to the remaining possible outcomes x of E. 

12. Binary experiments in general. To extend the scope of the preceding 
evidential interpretations of the statistic r to binary experiments which are not 
necessarily symmetric, let E: v(u) be any binary experiment. Let E*: v*(u) be 
the "reflection" of v(u) in the line u + v = 1; that is, for each point (u', v(u')) 
of the (continuous) graph of v(u), let the graph of v*(u) contain the point 
(u", v*(uII)) a (1 - v(u'), 1 - u'). Let E** = 'E (D 'E*; that is, E** is the 
mixture experiment having E and E* as components with probabilities each 2. 

Then E** is a symmetric binary experiment. If the experiment E** were under 
consideration, and if its component E were selected, then any outcome r of E 
must be interpreted evidentially in the way described in the preceding Section, 
since E** is symmetric; the selection of E is irrelevant here, given the numerical 
value of r. 

Returning to consideration of the given experiment E, any outcome r of E is 
equivalent, for purposes of informative inference, to an outcome of the mixture 
experiment E** in which the component E is first selected, and then the outcome 
r is observed. It follows that the evidential interpretations of outcomes r of any 
binary experiment must be of the same kinds as those given in the cases dis- 
cussed in the preceding Section. 
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13. Inferences based on the likelihood function. The results of the preceding 
analysis may be summarized as follows: When any binary experiment E is used 
for purposes of informative inference, and when any specified outcome r of E is 
obtained, the mathematical structure of E is then irrelevant to those purposes, 
and just the numerical value r is relevant. Any such observed numerical value r 
has an intrinsic objective probabilistic character as evidence relevant to H1 or 
H2; namely: (a) the qualitative property that the outcome favors H2 if r is 
positive, favors H1 if r is negative, and is irrelevant as evidence if r = 0; and 
(b) strength, as evidence, identical with that of a single outcome of the sym- 
metric simple binary experiment (-r2, r2), where r2 Irl. The latter simple 
experiment has probabilities of false positives and of false negatives each equal to 

(13.1) a = a[Irl] = 1/(1 + eirl )< 2 

We may say that such inferences are based just on the likelihood function 
[fi(x), f2(x)] on the observed outcome x, since r(x) is a compact representation 
of the likelihood function in the case of any binary experiment. 

If any evidential interpretations of observed values of r(x) are regarded within 
the frame of reference of the specific binary experiment E from which x is ob- 
tained, then we have formally a particular case of the procedures discussed in 
Section 8 above. However, such evidential interpretations of outcomes r(x), 
despite their objective aspects, are in general deficient for purposes of informa- 
tive inference to the extent that they differ from the evidential interpretations 
of the likelihood function described above. 

14. Appraisal and design of experiments for informative inference. Granting 
that the structure of a binary experiment is irrelevant to the evidential inter- 
pretation of an outcome x, apart from determination of r(x), there remain the 
important problems of appraising, comparing, and designing experiments for 
purposes of informative inference. Here the structure of an experiment is most 
relevant, and the partial ordering discussed above is basic: Error-probability 
curves #(a) (and their analogues in more complicated experiments) which have 
been studied extensively in modern mathematical statistics, although usually 
given other interpretations, are of direct use for such purposes. No simple order- 
ing of experiments, nor numerical measure of information in outcomes or experi- 
ments, seems adequate for such purposes in general (although possibly useful in 
a large-sample approximate sense), since the evidential meanings and values 
of numerical values r(x) are primitive (although objective) and the distributions 
of r(X) can in principle be considered directly. 

As an example of experimental design problems for informative inference, 
suppose that for two simple hypotheses it is required to obtain as economically 
as possible statistical evidence with strength represented by Ir(x) I _ log 99. If 
repeated independent observations Yi are available, with densities gi(y), 92(Y) 

under the respective hypotheses, and if costs depend only upon the number of 
observations (increasing with the latter in any way), it follows immediately 
that the most economical experimental design is given by the sequential sampling 
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rule which terminates when for the first time the observations taken, x - 

(yi, ... yn), satisfy jr(x) I _ log 99. Such sampling rules are the same as Wald's, 
given for the problem of sequential testing between two simple hypotheses. 
(The elementary determination of this rule as best for informative inference 
contrasts sharply with the difficult proof of its optimality for the testing prob- 
lem.) If indefinitely large sample sizes are not allowed, even with small prob- 
ability, the specification of the problem must be altered. 

15. Relations between statistical evidence and significance tests. Let E be 
any informative binary experiment, v(u) p u, and for some a, 0 < a < a', 

let da(u) be the best test of level a as defined in Section 8 above. Then as above 
this test has A = 1 - v(1 - a), 0 < A < 1. If outcomes of E are reported only 
in the form, either d2: "reject H1"; or d1: "do not reject H1" (or "accept H1"), 
then this significance test procedure is equivalent to the simple binary experi- 
ment E' in which the likelihood ratio statistic L has only the two possible values 
L= 3/(1 - a) < 1 (for di) or L2 = (1 -j3)/a > 1 (for d2). Hence the outcome 
"reject H1" has strength, as evidence, corresponding to the value L2 of the 
likelihood ratio statistic, and is associated intrinsically in the sense of Section 
14 above with the error-probability a* -1/(1 + L2) = a/(1 - 3 + a). 

If the ratio L2 of the test's power (1 - ) to its level a is not far above unity, 
then a* is not far below .5, and the evidential strength of the outcome "reject 
H1" is correspondingly slight; this can be the case within wide limits, for any 
value of a, including very small values. Thus in binary experiments a small value 
of a does not in general imply high evidential strength in the outcome "reject H1", 
and the determination of the evidential strength of such an outcome depends 
upon 3 as well as a, through the function L2 = (1 - f)/a. (Within a specified 
binary experiment, if a is decreased, then L2 is increased, at least if v(u) is 
strictly convex; however the upper limit approached by L2 as a decreases may 
or may not be far above unity.) 

On the other hand, if A is appreciably below .5, then small values of a corre- 
spond to similarly small values of a*, the error-probability intrinsically asso- 
ciated with the outcome "reject H1 ." For example, ,B < .25 implies a/ (1 + a) < 
a* < (4/3)a; if a is also small, such inequalities imply that a* -a. That is, if 
both a and j are small, then the error-probability a* corresponding to the intrinsic 
evidential strength of the outcome "reject H1" is approximately equal to a. 

Parallel remarks apply to evidential interpretations of the outcome "accept 
H1 ." 

While the preceding considerations clarify, and in important cases support, 
certain qualitative and quantitative features of customary uses and interpreta- 
tions of significance tests as techniques for informative inference, they do not 

completely support the method of significance tests as such for purposes of 
informative inference. For such purposes, the methods based as described above 
directly on the likelihood function are preferable in principle, for the reasons 
given there. 
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16. Relations of statistical evidence to prior information and to conclusions. 
The preceding sections have dealt with a single aspect of situations of informa- 
tive inference: the nature and properties of experimental outcomes as evidence 
relevant to statistical hypotheses. If each statistical hypothesis represented in a 
binary experiment is regarded initially as possibly true, then in many situations 
evidence against one hypothesis, if sufficiently strong, would support a conclusion 
that that hypothesis is false. The general nature of conclusions in various con- 
texts of investigation, their uses, limitations, and possible ultimate reversibility, 
are familiar (cf., Tukey, [4]). These features of conclusions, and the strength of 
statistical evidence which would suffice in any given situation to support a con- 
clusion, are among the aspects of inference situations (like (b) and (c) of Section 
9 above) whose formal specification is problematical. But the process by which 
informal consideration of the various aspects of inference situations, including 
experimental outcomes, sometimes leads to conclusions, is familiar; and the 
formal and objective evidential properties of experimental outcomes, analyzed 
above, are conveniently assimilable in this process. 

One aspect of an inference situation whose formal specification is often proble- 
matical is that of prior opinions or information, including relevant previous 
experience, indirect evidence, and general theoretical considerations. Bayesian 
treatments of inference problems, in which such considerations are represented 
by prior probabilities (in some sense) of the statistical hypotheses considered, 
will not be discussed here, except to note that they coincide with the informal 
process referred to in the preceding paragraph in taking just the likelihood 
function as the appropriate indicator of evidence in outcomes relevant to the 
hypotheses, and that they differ only in their degree and mode of formalization 
of other aspects of an inference situation. 

17. Acknowledgments. An example given by Cox [5] illustrated the usefulness 
of mixtures of experiments for analysis of problems in the foundations of statis- 
tical inference. A special status and role of the likelihood function in informative 
inference was pointed out by Fisher and by Barnard [6]; however the above 
methods of analysis and interpretation are new. 
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