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ON THE FOUNDATIONS OF STATISTICAL INFERENCE!

ALLAN BIRNBAUM
New York University

The concept of conditional experimental frames of reference has a
significance for the general theory of statistical inference which has
been emphasized by R. A. Fisher, D. R. Cox, J. W. Tukey, and others.
This concept is formulated as a principle of conditionality, from which
some general consequences are deduced mathematically. These include
the likelihood principle, which has not hitherto been very widely
accepted, in contrast with the conditionality concept which many
statisticians are inclined to accept for purposes of “informative infer-
ence.” The likelihood principle states that the “evidential meaning” of
experimental results is characterized fully by the likelihood function,
without other reference to the structure of an experiment, in contrast
with standard methods in which significance and confidence levels are
based on the complete experimental model. The principal writers sup-
porting the likelihood principle have been Fisher and G. A. Barnard,
in addition to Bayesian writers for whom it represents the “directly
empirical” part of their standpoint. The likelihood principle suggests
certain systematic reinterpretations and revisions of standard methods,
including “intrinsic significance and confidence levels” and “intrinsic
standard errors,” which are developed and illustrated. The close rela-
tions between non-Bayesian likelihood methods and Bayesian methods
are discussed.

1. INTRODUCTION, SUMMARY, AND GENERAL CONCLUSIONS

HIS paper treats a traditional and basic problem-area of statistical theory,

which we shall call informative inference, which has been a source of con-
tinuing interest and disagreement. The subject-matter of interest here may be
called experimental evidence: when an experimental situation is represented by
an adequate mathematical statistical model, denoted by E, and when any spec-
ified outcome « of Z has been observed, then (&, ) is an instance of statistical
evidence, that is, a mathematical model of an instance of experimental evidence.
Part of the specification of ¥ is a description of the range of unknown parameter
values or of statistical hypotheses under consideration, that is, the description
of a parameter space @ of parameter points 6. The remaining part of % is given
by description of the sample space of possible outcomes « of E, and of their re-

1 This paper was presented at aspecial discussion meeting of the American Statistical Association on Wednesday,
December 27, 1961 in the Roosevelt Hotel, New York City. George E. P. Box presided. Preprints of the paper were
available several weeks before the meeting. Discussion which followed the presentation is reported on pp. 807 to
826 of this issue. Research on which the paper is based was supported by the Office of Naval Research.
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spective probabilities or densities under respective hypotheses, typically by use
of a specified probability density function f(z, 8) for each 6.

Methods such as significance tests and interval estimates are in wide stand-
ard use for the purposes of reporting and interpreting the essential features of
statistical evidence. Various approaches to statistical theory have been con-
cerned to an appreciable extent with this function. These include: Bayesian ap-
proaches, including those utilizing the principle of insufficient reason; some
approaches using confidence methods of estimation and related tests of hy-
potheses; the fiducial approach of R. A. Fisher; and approaches centering on
the direct inspection and interpretation of the likelifood function alone, as sug-
gested by Fisher and G. A. Barnard. However the basic concepts underlying
this function seem in need of further clarification.

We may distinguish two main general problems of informative inference: The
problem of finding an appropriate mathematical characterization of statistical
evidence as such; and the problem of evidential interpretation, that is, of deter-
mining concepts and terms appropriate to describe and interpret the essential
properties of statistical evidence. It is useful sometimes to think of these prob-
lems, especially the first one, in connection with the specific function of report-
ing experimental results in journals of the empirical sciences.

The present analysis of the first problem begins with the introduction of the
symbol Ev(E, z) to denote the evidential meaning of a specified instance (E, x)
of statistical evidence; that is, Ev(&, z) stands for the essential properties
(which remain to be clarified) of the statistical evidence, as such, provided by
the observed outcome z of the specified experiment E. The next steps involve
consideration of conditions under which we may recognize and assert that two
instances of statistical evidence, (&, ) and (E’, y), are equivalent in all relevant
respects; such an assertion of evidential equivalence between (X, z) and (&', y)
is written: Ev(E, z) =Ev(E’, y).

A first condition for such equivalence, which is proposed as an aziom, is re-
lated to the concept of sufficient statistic which plays a basic technical role in
each approach to statistical theory. This is:

The principle of sufficiency (S): If E is a specified experiment, with outcomes z;
if t=1¢(x) is any sufficient statistic; and if E’ is the experiment, derived from
E, in which any outcome z of E is represented only by the corresponding
value t=1¢(x) of the sufficient statistic; then for each z, Ev(E, z) =Ev(Z’, 1),
where ¢=t(z).

A familiar illustration of the concept formulated here is given by the problem
of determining confidence limits for a binomial parameter: It is well known that
exact confidence levels in this problem are achieved only with use of an auxilia-
ry randomization variable, and that such confidence limits cannot be repre-
sented as functions of only the binomial sufficient statistic; the reluctance or re-
fusal of many statisticians to use such confidence limits for typical purposes of
informative inference is evidently an expression, within the context of this
approach, of the principle formulated above. (S) may be described informally
as asserting the “irrelevance of observations independent of a sufficient sta-
tistic.”
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A second condition for equivalence of evidential meaning is related to con-
cepts of conditional experimental frames of reference; such concepts have been
suggested as appropriate for purposes of informative inference by writers of
several theoretical standpoints, including Fisher and D. R. Cox. This condition
concerns any experiment £ which is mathematically equivalent to a miziure of
several other component experiments Ej, in the sense that observing an outcome
z of F is mathematically equivalent to observing first the value 2 of random
variable having a known distribution (not depending upon unknown parameter
values), and then taking an observation s from the component experiment E,
labeled by h. Then (h, 1) or (Es, x4) is an alternative representation of the out-
come z of E. The second proposed axiom, which many statisticians are inclined
to accept for purposes of informative inference, is:

The principle of conditionality (C): If E is any experiment having the form of
a mixture of component experiments Ej, then for each outcome (Es, 1) of
E we have Ev(&, (B, 1)) =Ev(Es, 21). That is, the evidential meaning of
any outcome of any mixture experiment is the same as that of the correspond-
ing outcome of the corresponding component experiment,ignoring the over-all
structure of the mixture experiment.

(C) may be described informally as asserting the “irrelevance of (component)
experiments not actually performed.”

The next step in the present analysis concerns a third condition for equiva-
lence of evidential meaning, which has been proposed and supported as self-
evident principally by Fisher and by G. A. Barnard, but which has not hitherto
been very generally accepted. This condition concerns the likelihood function,
that is, the function of 6, f(z, 6), determined by an observed outcome z of a
specified experiment E; two likelihood functions, f(z, 6) and ¢(y, 6), are called
the same if they are proportional, that is if there exists a positive constant ¢
such that f(z, 6) =cg(y, 6) for all . This condition is:

The likelihood principle (L): If E and E’ are any two experiments with the
same parameter space, represented respectively by density functions f(x, 6)
and g(y, 6); and if  and y are any respective outcomes determining the same
likelihood function; then Ev(&, ) =Ev(Z’, y). That is, the evidential mean-
ing of any outcome z of any experiment E is characterized fully by giving the
likelihood function ¢f(x, 6) (which need be described only up to an arbitrary
positive constant factor), without other reference to the structure of E.

(L) may be described informally as asserting the “irrelevance of outcomes not
actually observed.”

The fact that relatively few statisticians have accepted (L) as appropriate
for purposes of informative inference, while many are inclined to accept (S) and
(0), lends interest and significance to the result, proved herein, that (S) and (C)
together are mathemalically equivalent to (L). When (S) and (C) are adopted,
their consequence (L) constitutes a significant solution to the first problem of
informative inference, namely that a mathematical characterization of statisti-
cal evidence as such is given by the likelihood function.

Tor those who find (S) and (C) compellingly appropriate (as does the present
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writer), their consequence (L) has immediate radical consequences for the
every-day practice as well as the theory of informative inference. One basic
consequence is that reports of experimental results in scientific journals should
in principle be descriptions of likelihood functions, when adequate mathemati-
cal statistical models can be assumed, rather than reports of significance levels
or interval estimates. Part II of this paper, Sections 613, is concerned with the
general problem of evidential interpretation, on the basis of the likelihood
principle.

(L) implies that experimental frames of reference, whether actual, condi-
tional, or hypothetical, have no necessary essential role to play in evidential
interpretations. But most current statistical practice utilizes concepts and
techniques of evidential interpretation (like significance level, confidence inter-
val, and standard error) based on experimental frames of reference. Hence it
seems of considerable practical and heuristic value, as well as of theoretical
interest, to consider how far the commonly used concepts and techniques can
be reinterpreted or revised to provide modes of describing and interpreting
likelihood functions as such, utilizing experimental frames of reference in a
systematic but clearly conventional manner compatible with (). This ap-
proach leads to concepts and techniques of evidential interpretation called
“intrinsic significance levels,” “intrinsic confidence sets, with intrinsic confi-
dence levels,” and “intrinsic standard error of an estimate”; these are illus-
trated by examples. Perhaps the principal value of this approach will be to
facilitate understanding and use of likelihood functions as such, in the light of
the likelihood principle, by relating them to concepts and techniques more
familiar to many statisticians.

Bayesian methods based on the principle of insufficient reason, and a version
of Fisher’s fiducial argument, are interpreted as alternative partly-conventional
modes of description and evidential interpretation of likelihood functions.
Many points of formal coincidence between these and intrinsic confidence
methods are noted.

This analysis shows that when informative inference is recognized as a dis-
tinct problem-area of mathematical statistics, it is seen to have a scope includ-
ing some of the problems, techniques, and applications customarily subsumed
in the problem-areas of point or set estimation, testing hypotheses, and multi-
decision procedures. In fact the course of development of the latter areas of
statistics seems to have been shaped appreciably by the practice of formulating
problems of informative inference as problems of one of these kinds, and de-
veloping techniques and concepts in these areas which will serve adequately for
informative inference. At the same time each of these methods can serve pur-
poses distinct from informative inference; the inclusion of problems of two
distinet kinds, one of them traditional but not clearly enough delineated, seems
to have forced a certain awkwardness of formulation and development on these
areas. For example, problems of estimation of a real-valued parameter have
traditionally been dealt with by techniques which supply a point estimate
supplemented by an index of precision, or an interval estimate, and such tech-
niques serve the purposes of informative inference fairly adequately, particu-
larly in problems of simple structure. However, in modern generalizations and
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refinements of theories of estimation it becomes clear that no single formula-
tion is appropriate in general to serve the distinct functions of informative in-
ference on the one hand and either point or interval estimation on the other
hand; and that the attempt to serve both functions by a single formal theory
and set of techniques makes for awkwardness and indistinctness of purpose.

Recognition of informative inference as a distinet problem-area with its own
basic concepts and appropriate techniques should help unburden the other
problem-areas of statistics, particularly statistical decision theory, for freer
developments more clearly and deeply focused on the problems in their
natural mathematical and practical scope. Tukey [20, pp. 450, 468-74];
[21] has recently emphasized that the “elementary” problems of mathematical
statistics are still with us as live problems. Among these must be included
questions of specification of “what are the problems and the problem-areas
of mathematical statistics, what is their formal mathematical and extra-
mathematical content, and what are their scopes of application?” For example,
what are the typical substantial functions of point and interval estimation, and
of tests of hypotheses, apart from the function of informative inference?

The fact that the likelihood principle follows from the principles of sufficiency
and conditionality, which many find more acceptable than Bayes’ principle,
seems to provide both some comfort and some challenge to Bayesian view-
points: The “directly empirical” part of the Bayesian position concerning the
role of the likelihood function is given new support independent of Bayes’
principle itself. But this suggests the question: What are the specific contribu-
tions of the Bayesian concepts and techniques to the interpretation and use of
statistical evidence, above and beyond what is possible by less formalized
interpretations and applications based on direct consideration of the likelihood
" function in the light of other aspects of the inference situation, without formal
use of prior probabilities and Bayes’ formula? Specifically, what are the precise
contributions of quantitative prior probabilities, and of the other formal parts
of the Bayesian methods? Evidently in the present state of our understanding
there can be interesting collaboration between Bayesian and non-Bayesian
statisticians, in exploring the possibilities and limitations of both formal and
informal modes of interpreting likelihood functions, and in developing the im-
portant problem-areas of experimental design and of robustness from the
standpoint of such interpretations.

These considerations also present some challenge to non-Bayesian statisti-
cians accustomed to use of standard techniques of testing and estimation, in
which error-probabilities appear as basic terms of evidential interpretation in a
way which is incompatible with the principle of conditionality. The writer has
not found any apparent objections to the latter principle which do not seem to
stem from notions of “conditional” distinct from that considered here, or else
from purposes other than the modest but important one of informative inference.

Part I

2. Statistical evidence. A traditional standard in empirical scientific work is
accurate reporting of “what was observed, and under what experimental plan
and conditions.” Such reports are an essential part of the literature and the
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structure of the empirical sciences; they constitute the body of observational or
experimental evidence available at any stage to support the practical applica-
tions and the general laws, theories, and hypotheses of the natural sciences.
(Cf. Wilson [25], especially Ch. 13, and references therein.)

In some circumstances the “experimental plan and conditions” can be repre-
sented adequately by a mathematical-statistical model of the experimental
situation. The adequacy of any such model is typically supported, more or less
adequately, by a complex informal synthesis of previous experimental evidence
of various kinds and theoretical considerations concerning both subject-matter
and experimental techniques. (The essential place of working “conclusions”
in the fabric and process of science has been discussed recently by Tukey [22].)
We deliberately delimit and ¢dealize the present discussion by considering only
models whose adequacy is postulated and is not in question.

Let E denote a mathematical-statistical model of a given experimental situa-
tion: When questions of experimental design (including choice of sample size
or possibly a sequential sampling rule) have been dealt with, the sample space of
possible outcomes x of E is a specified set S= {z }. We assume that each of the
possible distributions of X is labeled by a parameter point ¢ in a specified
parameter space Q= {6}, and is represented by a specified elementary proba-
bility function f(z, 6). The probability that E yields an outcome z in A4 is

P(A]6) = Prob(X € A 0) = f 1, 0)du(a),
A

where u is a specified (o-finite) measure on S, and A is any (measurable) set.
Thus any mathematical model of an experiment, E, is given by specifying its
mathematical ingredients: (2, S, f, ). (No methods of advanced probability
theory are used in this paper. The reader familiar only with probabilities de-
fined by

P(4]6) = X f(z,0),

z€EA

for discrete distributions, and by
P(A|6) = f f(x, 6)dz,
A

for continuous distributions (with dzx possibly representing dz; - « - dz,), can
regard the symbol [4f(x, 6)du(z) as a generalization including those two im-
portant cases and some others.)

In an experimental situation represented by such a model Z, the symbol
(E, z) denotes an instance of statistical evidence. The latter term will be used
here to denote any such mathematical model of an instance of experimental
evidence: z represents “what was observed,” and E represents “under what
experimental plan and conditions.”

The central purpose of this paper is to clarify the essential structure and
properties of statistical evidence in various instances. We use the symbol
Ev(E, z), and the term evidential meaning (of a specified outcome x of a speci-
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fied experiment E), to refer to these essential properties and structure, whose
precise nature remains to be discussed.

The first general problem to be considered (throughout Part I) is whether a
satisfactory mathematical characterization can be found for evidential meaning in
various instances. The second general purpose (in the following sections, Part
II) is to consider what concepts, terms, and techniques are appropriate for
representing, interpreting, and expressing evidential meaning in various in-
stances; in other words, to consider critically the function of evidential inter-
pretation of experimental results. The broad but delimited part of mathematical
statistics which is concerned with these two problems, the characterization and
the interpretation of statistical evidence as such, will be termed here the prob-
lem-area of informative (statistical) inference. While such problems and meth-
ods have broad and varied relevance and use, it will be helpful sometimes to
focus attention on the specific and relatively simple function referred to above:
the formal reporting of experimental results, in empirical scientific journals, in
terms which are appropriate to represent their character as evidence relevant
to parameter values or statistical hypotheses of interest. We restrict present
consideration to situations in which all questions of characterizing and inter-
preting statistical evidence will have been considered in full generality before
an experiment is carried out: Our discussion concerns all possible outcomes z
and possible interpretations thereof, as these can in principle be considered at
the outset of a specified experiment; such discussion can subsequently be
broadened to include questions of appraisal, comparison, and design of experi-
ments for purposes of informative inference. Our discussion will not touch on
tests or other modes of inference in cases where the set of possible alternative
distributions is not specifiéd initially [9, Ch. 3].

Since the problem-area of informative inference has not received a generally
accepted delineation or terminology, it will be useful to note here some of the
terms and concepts used by writers representing several different approaches:

a) R. A. Fisher [9, pp. 139-41] has employed the term “estimation” to refer to
this problem-area, in contrast with the widely current usage of this term to refer
to problems of interval (or set) or point estimation. Fisher’s paper [10, pp.
175-6] includes in its introductory section (“On the nature of the problem”)
the following interpretation of Gossett’s fundamental work on testing a normal
mean: “In putting forth his test of significance ‘Student’ (1908) specified that
the problem with which he is concerned is that of a unique sample. His clear
intention in this is to exclude from his discussion all possible suppositions as to
the ‘true’ distribution of the variances of the populations which might have
been sampled. If such a distribution were supposed known, ‘Student’s’ method
would be open to criticism and to correction. In following his example it is not
necessary to deny the existence of knowledge based on previous experience,
which might modify his result. It is sufficient that we shall deliberately choose
to examine the evidence of the sample on its own merits only.”

The last two sentences may be taken to be descriptive of the problem-area of
informative inference, even though the context refers to significance tests. It is
clear that many of the principal modern statistical concepts and methods de-
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veloped by Fisher and other non-Bayesian writers have been directed to prob-
lems of informative inference. This applies in particular to Fisher’s description
of three modes of statistical inference, significance tests, estimation (in the
broad sense indicated above), and the fiducial argument [9, Ch. 3, especially
p. 73].

While such phrases as “specification of uncertainty” and “measure of the
rational grounds for . . . disbelief” have sometimes been used [9, pp. 43-4] to
describe the purpose and nature of informative inference, it is possible and it
seems desirable to discuss these problems without use of terms having specifi-
cally subjective or psychological reference. The latter course will be followed
throughout the present paper; our discussion of the structure and properties of
statistical evidence will not involve terms or concepts referring to “reactions to
evidence” in any sense.

b) Many of the developments and applications of statistical methods of test-
ing and estimation which stem from the work of Neyman and Pearson have
been directed to informative inference. Such methods are widely considered to
serve this purpose fairly adequately and soundly. The basic terms of such
applications and interpretations are probabilities of the errors of various kinds
which could be made in connection with a given experiment. (Measures of
precision of estimators can be interpreted as referring to probabilities of
various possible errors in estimation.) It is considered an essential feature
of such interpretations that these basic error-probability terms are objective,
in the mathematical sense (and in the related physical sense) that conceptually-
possible repetitions of an experiment, under respective hypotheses, would
generate corresponding relative frequencies of errors. In typical current prac-
tice, some reference to such error-probabilities accompanies inference state-
ments (“assertions,” or “conclusions”) about parameter values or hypotheses.
If an inference is thus accompanied by relevant error-probabilities which
are fairly small, the inference is considered supported by fairly strong evi-
dence; if such relevant error-probabilities are all very small, the evidence is
considered very strong. These remarks simply deseribe the general nature of
evidential interpretations of experimental results, which is traditionally and
widely recognized in scientific work; here the concepts and techniques of test-
ing and estimation serve as frameworks for such evidential interpretations of
results. Such evidential interpretations do not seem to differ in kind from those
associated with the less technical notion of circumstantial evidence when all
relevant hypotheses are considered (cf. for example Cohen & Nagel [7], pp.
347-51); they differ sharply in degree, in that precisely specified frameworks
for such interpretations are provided by the mathematical models of experi-
ments and by the formal definitions and properties of the inference methods
employed.

The usefulness for informative inference of tests and especially of confidence
set estimates has been emphasized recently by several writers, including Cox
[8], Tukey [22], and Wallace [23], [24]. At the same time these writers have
been concerned also with technical and conceptual problems related to such
use and interpretation of these methods. Cox [8, p. 359] has cited the term
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“summarization of evidence” to indicate the function of informative inference,
and like some other writers has described it as concerned with “statistical in-
ferences” or “conclusions,” in contrast with statistical decision problems for
which the basic mathematical structure and interpretations seem relatively
clear. As Cox writes [8, p. 354], “it might be argued that in making an inference
we are ‘deciding’ to make a statement of a certain type about the populations
and that, therefore, provided the word decision is not interpreted too narrowly,
the study of statistical decisions embraces that of inferences. The point here is
that one of the main general problems of statistical inference consists in decid-
ing what types of statement can usefully be made and exactly what they mean.
In statistical decision theory, on the other hand, the possible decisions are con-
sidered as already specified.”

¢) Approaches to statistical inference problems based upon Bayes’ principle of
inverse probability (with any interpretation) obtain on that basis clear and
simple answers to questions of informative inference, as will be reviewed below.
Writing from his own Bayesian standpoint, Savage [18] has recently de-
scribed as follows the difficulties and prospects of non-Bayesian approaches
such as those discussed above: “Rejecting both necessary and personalistic
views of probability left statisticians no choice but to work as best they could
with frequentist views. . .. The frequentist is required, therefore, to seek a
concept of evidence, and of reaction to evidence, different from that of the
primitive, or natural, concept that is tantamount to application of Bayes’
theorem.

“Statistical theory has been dominated by the problem thus created, and its
most profound and ingenious efforts have gone into the search for new meanings
for the concepts of inductive inference and inductive behavior. Other parts of
this lecture will at least suggest concretely how these efforts have failed, or
come to a stalemate. For the moment, suffice it to say that a problem which
after so many years still resists solution is suspect of being ill formulated, espe-
cially since this is a problem of conceptualization, not a technical mathematical
problem like Fermat’s last theorem or the four-color problem.”

The present paper is concerned primarily with approaches to informative

inference which do not depend upon the Bayesian principle of inverse proba-
bility.
3. The principle of sufficiency. As the first step of our formal analysis of the
structure of evidential meaning, Ev(Z, z), we observe that certain cases of
equivalence of evideniial meaning can he recognized, even in advance of more
explicit characterization of the nature of evidential meaning itself. We shall
write Ev(Z, ) =Ev(Z’, y) to denote that two instances of statistical evidence,
(E, z) and (£, y), have the same (or equivalent) evidential meaning.

For example, let (E, z) and (E’, y) be any two instances of statistical evi-
dence, with E and E’ having possibly different mathematical structures but the
same parameter space Q= {0} Suppose that there exists a one-to-one trans-
formation of the sample space of E onto the sample space of E': y=y(z),
z=2x(y), such that the probabilities of all corresponding (measurable) sets under
all corresponding hypotheses are equal: Prob(YEA’I 8) =Prob(XEA|6) if
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A’=y(A). Then the models E and E’ are mathematically equivalent, one being a
relabeling of the other. If respective outcomes x of E and y of E’ are related by
y=y(z), they also are mathematically equivalent, and the two instances of
statistical evidence (Z, z) and (E’, y) may be said to have the same evidential
meaning: Ev(Z, z) =Ev(E’, y). A simple concrete example is that of models of
experiments which differ only in the units in which measurements are expressed.

Again, consider (E, x) and (£’, t), where t(z) is any sufficient statistic for E,
and where E’ represents the possible distributions of ¢(x) under the respective
hypotheses of E. Then, for reasons which are recognized within each approach
to statistical theory, we may say that Ev(Z, z)=Ev(E’, ¢) if t=¢(z). An ex-
ample which occurs within the approach to informative inference which utilizes
confidence intervals (and related tests) involves the possible use of randomized
confidence limits (or tests), for example for a binomial parameter. The view,
held by many, that randomized forms of such techniques should not be used
seems to stem from an appreciation that sufficiency concepts must play a cer-
tain guiding role in the development of methods appropriate for informative
inference. (For a recent discussion and references, cf. [21].)

Such considerations may be formalized as follows to provide an aziom which
we adopt to begin our mathematical characterization of evidential meaning:

Principle of sufficiency (S): Let E be any experiment, with sample space
{x} , and let ¢(z) be any sufficient statistic (not necessarily real-valued). Let
E’ denote the derived experiment, having the same parameter space, such
that when any outcome z of E is observed the corresponding outcome ¢ =1(x)
of E’ is observed. Then for each z, Ev(E, z) =Ev(E’, {), where t=1(x).

It is convenient to note here for later use certain definitions and a mathemati-
cal consequence of (8): If x is any specified outcome of any specified experiment
E, the likelihood function delermined by x is the function of 0: ¢f(z, ), where c is
assigned arbitrarily any positive constant value. Let £ and E’ denote any two
experiments with the same parameter space (£’ could be identical with E),
and let x and y be any specified outcomes of these respective experiments, de-
termining respective likelihood functions f(z, 6) and g(y, 6); if for some positive
constant ¢ we have f(z, 6) =cg(y, 6) for all 9, z and y are said to determine the
same likelihood function. It has been shown in the general theory of sufficient
statistics (cf. [1]) that if two outcomes z, 2’ of one experiment E deter-
mine the same likelihood function (that is, if for some positive ¢ we have
Iz, 0)=cf(z’, 6) for all 6), then there exists a (minimal) sufficient statistic ¢ such
that ¢(z) =¢(z’). (In the case of any discrete sample space, the proof is ele-
mentary.) This, together with (S), immediately implies

Lemma 1. If two outcomes z, z’ of any experiment E determine the same
likelihood function, then they have the same evidential meaning: Ev(Z, z)
=Ev (E, 2').

4. The principle of conditionality

4.1. The next step in our analysis is the formulation of another condition for
equivalence of evidential meaning, which concerns conditional experimental
frames of reference. This will be stated in terms of the following definitions:
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An experiment F is called a mexture (or a mixture experiment), with com-
ponents {E;.}, if it is mathematically equivalent (under relabeling of sample
points) to a two-stage experiment of the following form:

(a) An observation & is taken on a random variable H having a fixed and known
distribution G. (@ does not depend on unknown parameter values.)

(b) The corresponding component experiment E, is carried out, yielding an
outcome .

Thus each outcome of Z is (mathematically equivalent to) a pair (Ex, ).
(Each component experiment Ej;, and E, all have the same parameter space.
Every experiment is a mixture in the trivial sense that all components may be
identical; the non-trivial cases, with non-equivalent components, are of
principal interest. Examples will be discussed below.)

As a second proposed axiom concerning evidential meaning, we take the

Principle of conditionality (C): If an experiment E is (mathematically
equivalent to) a mixture G' of components {Es}, with possible outcomes
(E},,, xh), then

EV(E, (Eh, x;.)) = EV(E},, :L‘;.).

That is, the evidential meaning of any outcome (X3, x1) of any experiment
E having a mixture structure is the same as: the evidential meaning of the
corresponding outcome z; of the corresponding component experiment Ej,
ignoring otherwise the over-all structure of the original experiment E.

4.2. A number of writers have emphasized the significance of conditionality
concepts for the analysis of problems of informative inference. Fisher recently
wrote [9, pp. 157-8] “The most important step which has been taken so far to
complete the structure of the theory of estimation is the recognition of Aneil-
lary statistics.” (Evidently a statistic like 4 above, whose distribution is known
and independent of unknown parameters, is an example of an ancillary sta-
tistic. “Estimation” is used here by Fisher in the broad sense of informative
inference, rather than point or interval estimation.) Other relevant discussions
have been given by Cox [8, pp. 359-63], Wallace [23, especially p. 864 and
references therein ], and Lehmann [14, pp. 139-40].

The following sections will be largely devoted to the deduction of some math-
ematical consequences of (C) and (S), and to their interpretation. The re-
mainder of the present section is devoted to discussion and illustration of the
meaning of (C); and to illustration of the considerations which seem to many
statisticians, including the writer, to give compelling support to adoption of (C)
as an appropriate extra-mathematical assertion concerning the structure of
evidential meaning.

It can be shown that (S) is implied mathematically by (C). (The method of
proof is the device of interpreting the conditional distribution of z, given
i(z) =t, as a distribution G4(h) defining a mixture experiment equivalent to the
given experiment.) This relation will not be discussed further here, since there
seems to be little question as to the appropriateness of (S) in any case.
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4.3. Ezample. A simple concrete (but partly hypothetical) example is the fol-
lowing: Suppose that two instruments are available for use in an experiment
whose primary purpose is informative inference, for example, to make observa-
tions on some material of general interest, and to report the experimental re-
sults in appropriate terms. Suppose that the experimental conditions are fixed,
and that these entail that the selection of the instrument to be used depends
upon chance factors not related to the subject-matter of the experiment, in such
a way that the instruments have respective known probabilities g;=.73 and
g2=.27 of being selected for use. The experimental conditions allow use of the
selected instrument to make just one observation, and each instrument gives
only dichotomous observations, y=1 (“positive”) or 0 (“negative”).

(We recall that discussion of design of experiments for informative inference
has been deferred; but we stress that any satisfactory general analysis of evi-
dentjal meaning must deal adequately with artificial and hypothetical experi-
ments as well as with those of commonly-encountered forms. Even the present
example is not very artificial, since the alternative instruments are simple an-
alogues of observable experimental conditions (like independent variables in
some regression problems) which may be uncontrollable and which have known
effects on experimental precision.) If the instruments are labeled by A=1 or 2,
respectively, then each outcome of this experiment E is represented by a sym-
bol (h, y) or (h, yr), where h=1 or 2, and y =y,=0 or 1. We assume that the ma-
terial under investigation is known to be in one of just two possible states, H,
or H, (two simple hypotheses). Each instrument has equal probabilities of
“false positives” and of “false negatives.” For the first instrument these are

1
ay = Prob(Y; = 1| Hy) = Prob(Y; = 0| H,) = == 0014,

and for the second instrument
az = Prob(¥, = 1| H;) = Prob(Y; = 0|H,) = .10.

As an instance of the general proposition (C), consider the assertion: Ev(E, (B,
1))=Ev (&, 1). This assertion is apparently not necessary on mathematical
grounds alone, but it seems to be supported compellingly by considerations like
the following concerning the nature of evidential meaning: Granting the valid-
ity of the model E and accepting the experimental conditions which it repre-
sents, suppose that E leads to selection of the first instrument (that is, H=h=1
is observed). Then by good fortune the experimenter finds himself in the same
position as if he had been assured use of that superior instrument (for one ob-
servation) as an initial condition of his experiment. In the latter hypothetical
situation, he would be prepared to report either (y, 0) or (&, 1) as a complete
description of the statistical evidence obtained. In the former actual situation,
the fact that the first instrument might not have been selected seems not only
hypothetical but completely irrelevant: For purposes of informative inference,
if Y=1 is observed with the first instrument, then the report (¥, 1) seems to
be an appropriate and complete description of the statistical evidence obtained;
and the “more complete” report (&, (E;, 1)) seems to differ from it only by the
addition of recognizably redundant elements irrelevant to the evidential mean-
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ing and evidential interpretation of this outcome of E. The latter redundant
elements are the descriptions of other component experiments (and their prob-
abilities) which might have been carried out but in fact were not. Parallel com-
ments apply to the other possible outcomes of E.

4.4. Asformulated above, (C) is not a recommendation (or directive or conven-
tion) to replace unconditional by conditional experimental frames of reference
wherever (C) is seen to be applicable. However if (C) is adopted it tends to in-
vite such application, if only for the advantage of parsimony, since a condi-
tional frame of reference is typically simpler and seems more appropriately re-
fined for purposes of informative inference. Writers who have seen value in such
conditionality concepts have usually focused attention on their use in this way.
However, even the range of such applications has not been fully investigated in
experiments of various structures. And the implications of such conditionality
concepts for problems of informative inference in general appear considerably
more radical than has been generally anticipated, as will be indicated below.
We shall be primarily concerned with the use of (C) as a tool in the formal anal-

* ysis of the structure of evidential meaning; and in such use, (C) as formulated
above also sanctions the replacement of a conditional experimental frame of
reference by an appropriately corresponding unconditional one (by substitution
of Ev(E, (En, x4)) for an equivalent Ev(E}, 1)).

4.5. Another aspect of such interpretations can be discussed conveniently in
terms of the preceding example. The example concerned an experiment whose
component experiments are based on one or another actual experimental instru-
ment. Consider next an alternative experiment plan (of a more familiar type)
which could be adopted for the same experimental purpose: Here just one
instrument is available, the second one described above, which gives observa-
tions Y'=1 with probabilities .1 and .9 under the same respective hypotheses
H,, H;, and otherwise gives ¥'=0. The present experimental plan, denoted by
E 3, calls for 3 independent observations by this instrument; thus the model Ep
is represented by the simple binomial distributions of

3
X=ZY,':

i=1

Hy:fi@) = QD9

Hy: fol@) = QD)

for =0, 1, 2, 3. Ep will provide one of the instances of statistical evidence
(Es, z), =0, 1, 2, or 3. The physical experimental procedures represented
respectively by E and Ep are manifestly different. But we verify as follows that
the mathematical-statistical models E and Ep are mathematically equivalent:
Each experiment leads to one of four possible outcomes, which can be set in the
following one-to-one correspondence:

E yields: (B, ys) = (B, 0) (B3, 0) (Ey 1) (By 1)

Ep yields: z= 0 1 2 3
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It is readily verified that under each hypothesis the two models specify identical
probabilities for corresponding outcomes. For example,

729
Prob((Es, 0) | Hy, E) = (.73) — = .729
((By, 0)| Hy, E) = ( )730

= @(D°(9)" =7(0)
= Prob(X = 0| Hi, Ep).

Thus (Ez, 0) and (B, (Ei, 0)) are mathematically equivalent instances of statisti-
cal evidence. We therefore write Ev(Ez, 0) =Ev(E, (Ei, 0)). Is the latter asser-
tion of equivalence of evidential meanings tenable here, because of the mathe-
matical equivalence of (E, 0) and (B, (Ei, 0)) alone, and despite the gross dif-
ference of physical structures of the experiments represented by E and E? An
affirmative answer seems necessary on the following formal grounds: Each of the
models E and Ep was assumed to be an adequate mathematical-statistical
model of a corresponding physical experimental situation; this very strong as-
sumption implies that there are no physical aspects of either situation which
are relevant to the experimental purposes except those represented in the
respective models E and Ez. The latter models may be said to represent ade-
quately and completely the assumed physical as well as mathematical struc-
tures of the experiments in all relevant respects; for example, the usual concep-
tual frequency interpretations of all probability terms appearing in each model
may be taken to eharacterize fully the physical structure and meaning of each
model. Hence the assumed adequacy and the mathematical equivalence of the
two models imply that the two experimental situations have in effect been as-
sumed to be physically equivalent in all relevant respects. This interpretative
conclusion can be illustrated further by considering the rhetorical question:
On what theoretical or practical grounds can an experimenter reasonably sup-
port any definite preference between the experiments represented by E and Es,
for any purpose of statistical inference or decision-making, assuming the ade-
quacy of each model?

Combining this discussion with section 4.3 above, we find that (C) implies
that Ev(Ep, 0) = Ev(E;, 0), although no mixture structure was apparent in the
physical situation represented by Esz, nor in the binomial model Er as usually
interpreted.

4.6. We note that (C) above differs in meaning and scope from the purely tech-
nical use which is sometimes made of conditional experimental frames of refer-
ence, as in the development of similar tests of composite hypotheses (as in
Lehmann [14, p. 136]) or of best unbiased estimators.

4.7. We note also that (C) above does not directly involve, or ascribe meaning
to, any notion of evidential interpretations “conditional on an observed sample
point z.” Rather, (C) ascribes equivalence to certain instances of evidential
meaning of respective outcomes, each referred to a specified mathematically
complete experimental frame of reference. (The phrase in quotes can be given
a precise mathematical meaning under postulation of the principle of inverse
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probability, in which case it refers to a posterior distribution, given z. However
our discussion is not based on such postulation.)

4.8. In considering whether (C) seems appropriate for all purposes of informa~
tive inference, it is necessary to avoid confusion with still another usage of
“conditional” which differs from that in (C). A familiar simple example of this
other usage occurs in connection with a one-way analysis of variance experi-
ment under common normality assumptions. Results of such an experiment
may be interpreted either “conditionally” (Model I) or “unconditionally”
(Model II), and in some situations there are familiar purposes of informative
inference (focusing on a component of variance) in which the “unconditional”
interpretation is useful and necessary. However, the latter important point is
not relevant to the question of the general appropriateness of (C) for informa-
tive inference, because the “conditional” frame of reference in this example
cannot be interpreted as a component experiment within a mixture experiment
as required for applicability of (C).

4.9. It is the opinion of the writer (among others) that upon suitable considera-
tion the principle of conditionality will be generally accepted as appropriate
for purposes of informative inference, and that apparent reservations will be
found to stem either from purposes which can usefully be distinguished from
informative inference, or from interpretations of “conditionality” different
from that formulated in (C), some of which have been described above. (Of
course purposes of several kinds are frequently represented in one experimental
situation, and these are often served best by applying different concepts and
techniques side by side as appropriate for the various purposes.) In any case,
the following sections are largely devoted to examination of the mathematical
consequences of (C) and their interpretation.

5. The likelihood principle

5.1. The next step in our analysis concerns a third condition for equivalence of
evidential meaning:

The likelihood sprinciple (L): If E and E’ are any two experiments with a
common parameter space, and if z and y are any respective outcomes which
determine likelihood functions satisfying f(z, 6) =cg(y, ) for some positive
constant ¢=c(z, y) and all 6, then Ev(E, z)=Ev(E’, y). That is, the evi-
dential meaning Ev(Z, z) of any outcome z of any experiment E is char-
acterized completely by the likelihood function ¢f(z, 8), and is otherwise inde-
pendent of the structure of (E, z).

5.2. (L) is an immediate consequence of Bayes’ principle, when the latter (with
any interpretation) is adopted. Our primary interest, as mentioned, is in ap-
proaches which are independent of this principle.

5.3. Fisher [9, pp. 68-73, 128-31, and earlier writings] and Barnard [2, and
earlier writings| have been the principal authors supporting the likelihood
principle on grounds independent of Bayes’ principle. (The principle of maxi-
mum likelihood, which is directed to the problem of point-estimation, is not to
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be identified with the likelihood principle. Some connections between the dis~
tinct problems of point-estimation and informative inference are discussed
below.) Self-evidence seems to be essential ground on which these writers sup-
port (L).

5.4. Other modes of support for (L), such as the basic technical role of the
likelihood function in the theory of sufficient statistics and in the characteriza-
tion of admissible statistical decision functions, seem heuristic and incomplete,
since (as in the formulation of (S), and its consequence Lemma 1, in Section 3
above) they do not demonstrate that evidential meaning is independent of the
structure of an experiment apart from the likelihood function.

5.5. Far fewer writers seem to have found (L) as clearly appropriate, as an
extra-mathematical statement about evidential meaning, as (C). It is this fact
which seems to lend interest to the following:

Lemma 2. (L) implies, and is implied by, (S) and (C).

Proof: That (L) implies (C) follows immediately from the fact that in all cases
the likelihood functions determined respectively by (&, (Ex, xx)) and (Ex, xx)
are proportional. That (L) implies (S) follows immediately from Lemmsa 1 of
Section 3.

The relation of principal interest, that (S) and (C) imply (L), is proved as
follows: Let £ and E’ denote any two (mathematical models of) experiments,
having the common parameter space Q= {0} , and represented by probability
density functions f(z, 6), g(y, 6) on their respective sample spaces S= {w},
S/ = {y} (S and 8’ are to be regarded as distinct, disjoint spaces.) Consider
the (hypothetical) mixture experiment E* whose components are just E and
E’, taken with equal probabilities. Let z denote the generic sample point of E*,
and let C denote any set of points z; then C=A4\UB, where ACS and BCS’,
and

1 1
Prob(Z € C|0) = 5 Prob(4 | 6, E) + 5 Prob(B| 6, E")

1 1 y

(where A and B are measurable sets). Thus the probability density function
representing £* may be denoted by

3f(z,0), ifz=2&8,
M0 = { . !
39, 0), ifz=yecs.
Each outcome z of E* has a representation
{(E,x), fz=2z€&8,
(E”r y)r ife=ye&dl,

From (C), it follows that
Ev(E* (E,z)) = Ev(E, x), foreachz €8, and

5.1
Ev(E*, (B, y)) = Ev(E,y), foreachy € 8'. 6.
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Let z’, ¥’ be any two outcomes of E, E’ respectively which determine the same
likelihood function; that is, f(z’, 8) =cg(y’, 6) for all 8, where ¢ is some positive
constant. Then we have h(z’, 8)=ch(y’, 6) for all 9; that is, the two outcomes
(B, z'), (E', y") of E* determine the same likelihood function. Then it follows
from (S) and its consequence Lemma 1 in Section 3 that

Ev(E*, (E, 2')) = Ev(E*, (E', ¥)). (5.2)
From (5.1) and (5.2) it follows that
Ev(E, 2') = Ev(E', y'). (5.3)

But (5.3) states that any two outcomes z’, y’ of any two experiments E, E’
(with the same parameter space) have the same evidential meaning if they de-
termine the same likelihood function. This completes the proof of equivalence of
(L) with (S) and (C).

5.6. For those who adopt (C) and (8S), their consequence (L) gives an explicit
solution to our first general problem, the mathematical characterization of
statistical evidence as such. The question whether different likelihood func-
tions (on the same parameter space) represent different evidential meanings is
given an affirmative answer in the following sections, in terms of evidential
interpretations of likelihood functions on parameter spaces of limited general-
ity; and presumably this conclusion can be supported quite generally.

5.7. The most important general consequence of (L) (and of (C)) for problems
of evidential interpretation seems to be the following: Those modes of represent-
ing evidential meaning which include reference to any specific experimental
frame of reference (including the actual one from which an outcome was ob-
tained) are somewhat unsatisfactory; in particular, they tend to conceal equiva-
lences between instances of evidential meaning which are recognizable under
(L). Various modes of interpretation of evidential meaning will be discussed in
the following sections, with particular attention to their relations to ().

5.8. The scope of the role of ancillary statistics in informative inference seems
altered in the light of the result that (C) and (S) imply (L). As mentioned, the
usual use of (C)*has depended on recognition of an ancillary statistic (or mix-
ture structure) in the model of an actual experiment under consideration; and
has consisted primarily of the adoption of conditional frames of reference, when
thus recognized, for evidential interpretations. But the range of existence of
ancillary statistics in experiments of various structures has not been com-
pletely explored; indeed, in the simple case of binary experiments (those with
two-point parameter spaces), the fact that they exist in all but the simplest
cases has been seen only very recently in reference [3]. Thus the potential scope
and implications, which even such usual applications of (C) might have for
informative inference, have not been fully seen.

Moreover, the question of conditions for uniqueness of ancillary statistics,
when they exist, has received little attention. But simple examples have been
found, some of which are described in reference [3], in which one experiment
admits several essentially different ancillary statistics; when (C) is applied in
the usual way to each of these alternative ancillary statistics in turn, one can
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obtain quite different conditional experimental frames of reference for eviden-
tial interpretation of a single outcome. Even isolated examples of this kind seem
to pose a basic problem for this approach: it would seem that, in the face of
such examples, the usual use of (C) must be supplemented either by a conven-
tion restricting its scope, or by a convention for choice among alternative con-
ditional frames of reference when they exist, or by some radical interpretation
of the consequences of (C), in which the role of experimental frames of refer-
ence in general in evidential interpretations is reappraised. The adoption of a
convention to avoid certain possible applications of (C) would seem artificial
and unsatisfactory in principle; on the other hand, the need for a radical reap-
praisal of the role of experimental frames of reference, which is apparent in the
light of such examples, is confirmed quite generally by the above result, that
(C) and (8) imply (L). For according to (L), reference to any particular experi-
mental frame of reference, even an actual or a conditional one, for evidential
interpretations, has necessarily a partly-conventional character.

Earlier proofs that (C) and (S) imply (L), restricted to relatively simple
classes of experiments, utilized recognition of mixture structures in experi-
ments [3], [4]. But in the above proof that (C) and (S) imply (L) for all classes
of experiments, no existence of mixture structures in the experiments E, E’,
under consideration was required; the ancillary used there was constructed
with the hypothetical mixture E*. The conclusion (L) takes us beyond the
need to examine specific experiments for possible mixture structure, since it
eliminates the need to regard any experimental frames of reference, including
actual or conditional ones, as essential for evidential interpretations. The possi-
ble usefulness of experimental frames of reference in a partly conventional sense
for evidential interpretations will be discussed in some of the following sections.

Part I1

6. Evidential interpretations of likelihood funciions. We have seen above that on
certain grounds, the likelihood principle (L) gives a solution of the first general
problem of informative inference, that of mathematical characterization of
evidential meaning. On this basis the second general problem of informative in-
ference, that of evidential interpretations in general, can be described more
precisely as the problem of evidential interpretations of likelihood functions.
The remaining sections of this paper are devoted to the latter problem, that is,
to consideration of questions like the following: When any instance (E, z) of
statistical evidence is represented by just the corresponding likelihood function
L(6) =cf(x, 6) (c an arbitrary positive constant), what are the qualitative and
quantitative properties of the statistical evidence represented by L(8)? What
concepts and terms are appropriate for describing and interpreting these evi-
dential properties? How are such modes of evidential interpretation related to
those in current general use?

The principal writers supporting the use of just the likelihood function for
informative inference have not elaborated in very precise and systematic detail
the nature of evidential interpretations of the likelihood function. Fisher has
recently given a brief discussion and examples of such interpretations [9, es-
pecially pp. 68-73, 128-31]. He describes the relative likelihoods of alterna-
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tive values of parameters as giving “a natural order of preference among the
possibilities” (p. 38); and states that inspection of such relative likelihoods
“shows clearly enough what values are implausible” (p. 71). Such interpreta-
tions were also recently discussed and illustrated by Barnard [2]. Both writers
stress that point estimates, even when supplemented by measures of precision,
have limited value for these purposes. For example when log L(6) has (at least
approximately) a parabolic form, then a point estimate (maximum likelihood)
and a measure of its precision (preferably the curvature of log L(6) at its maxi-
mum) constitute a convenient mode of description of the complete likelihood
function (at least approximately) ; but more generally, with very different forms
of L(), such descriptive indices have less descriptive value.

More detailed discussion of evidential interpretations of likelihood func-
tions, and clarification of the meanings of terms appropriate for such discussion,
seems desirable if possible, as has been remarked by Cox [8, p. 366]. These are
the purposes of the following sections. Since any non-negative function L(6),
defined on an arbitrary parameter space, is a possible likelihood function, it is
convenient to consider in turn parameter spaces of various forms, beginning
for simplicity with the case of a two-point parameter space, followed by the
case of any finite number of parameter points, and then more general and
typical cases.

7. Binary experiments. (Parts of this section are closely related to reference [3,
pp. 429-34].)

7.1. The simplest experiments, mathematically, are binary experiments, that
is, experiments with parameter spaces containing just two points, 6;, 6,, repre-
senting just two simple hypotheses, H;, H,. Any outcome z of any such experi-
ment determines a likelihood function L(6) = ¢f(z, ) which may be represented
by the pair of numbers (¢f(z, 61), ¢f(x, 82)), with ¢ any positive constant. Hence
L(#) is more parsimoniously represented by A=\(z) =f(z, 65)/f(z, 6:). (\(x) is
the likelihood ratio statistic, which appears with rather different interpreta-
tions in other approaches to statistical theory.) Each possible likelihood func-
tion arising from any binary experiment is represented in this way by a num-
ber X\, 0<A< . What sorts of evidential interpretations can be made of such
a number M which represents in this way an outcome of a binary experiment?
As a convenient interpretative step, consider for each number o, 0<a<%, a
binary experiment whose sample space contains only two points, denoted
“positive” (+) and “negative” (—), such that Prob(+ l H,)=Prob(— l H,)=a.
Any such symmetric stmple binary experiment is characterized by the “error
probability” a which is the common value of “false positives” and “false neg-
atives.” (a is the common value of error-probabilities of Types I and II of the
test of H, against H, which rejects just on the outcome +.) The outcomes of
such an experiment determine the likelihood functions A(+)=(1—a)/a>1
and M —) =a/(1 —a) =1/NM(+) <1 respectively, with smaller error probabilities
giving values farther above and below unity, respectively. According to the
likelihood prineciple (L), when any binary experiment E gives any outcome z de-
termining a likelihood function N(z) >1, the evidential meaning of \(z) is the
same as that of the positive outcome of the symmetric simple binary experi-
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ment with error-probability o« such that Mz)=(1—a)/a, that is, @a=1/(1
+N(z)). If the actual experiment E had the latter form, the outcome would
customarily be described as “significant at the « level” (possibly with reference
also to the Type IT error-probability, which is again «). This currently standard
usage can be modified in a way which is in accord with the likelihood principle
by calling a=1/(14M(z)) the intrinsic significance level associated with the
outcome z, regardless of form of E. Here the probability « is defined in a
specified symmetric simple binary experiment, and admits therein the usual
conceptual frequency interpretations. The relations between such an experi-
ment and the outcome A(z) being interpreted are conceptual, in a way which
accords with the likelihood principle; the conventional element involved in
adopting such an experimental frame of reference for evidential interpretations
is clear, and is necessary in the light of the likelihood principle. (Alternative
conventions of choice of experimental frames of reference are discussed in ref-
erence [3].) Outcomes giving A(z) <1 can be interpreted similarly: such out-
comes support H; against H, with evidential strength corresponding to the
intrinsic significance level a=\(z)/(1+X(z)).

In connection with the current use of significance levels in evidential inter-
pretations, it has often been stressed that consideration of the power of tests
is essential to reasonable interpretations. But no systematic way of consider-
ing power along with significance levels seems to have been proposed specifi-
cally for the purpose of informative inference. And current standard practice
often fails to include such consideration in any form (cf. reference [12]). The
concept of intrinsie significance level incorporates automatic consideration of
error-probabilities of both types, within its own experimental frame of ref-
erence, in a way which is also in accord with the likelihood principle.

7.2. Tukey [22] has recently stressed the need for a critical reappraisal of the
role of significance tests in the light of a history of the practice and theory of
informative inference. The next paragraphs are a brief contribution in this
direction from the present standpoint.

Because the function of informative inference is so basic to empirical scien-
tific work, it is not surprising that its beginnings can be traced back to an
early stage in the development of the mathematical theory of probability. As
early as 1710, Dr. John Arbuthnot computed the probability of an event
which had been observed, that in each of a certain 82 successive years more
male than female births would be registered in London, on the hypothesis
that the probability of such an event in a single year was %; and he interpreted
the very small probability (3)® as strong evidence against the hypothesis
[19,pp. 196-8]. This was perhaps the earliest use of a formal probability calcula-
tion for a purpose of statistical inference, which in this case was informative in-~
ference. Other early writers considered problems involving mathematically
similar simple statistical hypotheses, and alternative hypotheses of a statisti-
cally-degenerate kind under which a particular outcome was certain: a “per-
manent cause” or “certain cause,” or non-statistical “law of nature,” that is, a
hypothesis “which always produces the event” [6, pp. 261, 358]. (It is not alto~
gether clear that a simple non-statistical alternative would correspond to
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Arbuthnot’s view of his problem.) Non-occurrence of such an outcome, even
once in many trials, warrants rejection of such a hypothesis without qualifica-
tion or resort to statistical considerations; but occurrence of such an outcome
on each of n trials provides statistical evidence which requires interpretation
as such. If the event in question has probability p of occurrence in one trial
under the first hypothesis (and probability 1 under the second), then the prob-
ability of its occurrence in each of » independent trials is P =p" under the first
hypothesis (and 1 under the second). (It is convenient to assume in our discus-
sion that n was fixed; this may be inappropriate in some interpretations of
these early examples.) In Arbuthnot’s example, P= (%)%,

In such problems, the quantity on which evidential interpretations center is
P, and small values of P are interpreted as strong evidence against the first
hypothesis and for the second. What general concepts and basic terms are in-
volved in these simple and “obviously sound” evidential interpretations? We
can distinguish three mathematical concepts which do not coincide in general,
but which assume the common form P in cases of the present extreme simplic-
ity : Here P is not only the probability of “what was observed” under H;: (a) P
is the probability of an outcome “at least as extreme as that observed” under
H, (because here there are no outcomes which are “more extreme”); that is P
is a significance level (or critical level); and (b) P is the ratio of the probabilities,
under respective hypotheses, of “what was observed”; that is, P is a likelthood
ratio . To determine whether (a) or (b) is the appropriate general concept of
evidential interpretation which is represented here by the obviously-appropri-
ate quantity P, we must turn to more general considerations, such as the anal-
ysis of the preceding sections. Since in more complex problems the two con-
cepts no longer coincide, one may wonder whether early and current uses of the
significance level concept have sometimes derived support by inappropriate
generalization, to (a) as against (b), from such simple and perhaps deceptively
“clear” examples.

7.3. It is convenient to discuss here a reservation sometimes expressed concern-
ing (L) itself, because this reservation involves significance levels. Experiments
of different structures, for example experiments based on observations of the
same kind but based on different sampling rules, may lead to respective out-
comes which determine the same likelihood function but which are assigned
different significance levels according to common practice. It is felt by many
that such differences in significance levels reflect genuine differences between
evidential meanings, corresponding to the different sampling rules; and there-
fore that (L) is unreasonable because it denies such differences of evidential
meaning. The following discussion of a concrete example may throw further
light on this point, while providing additional illustrations of (C) and (L) and
their significance. Consider once more the binomial experiment Ep of Section
4.4 above, consisting of three independent observations on Y, which takes the
values O or 1, with probabilities .9, .1, respectively under H;, and with proba-
bilities .1, .9, respectively under H,. Consider also a sequential experiment Eg
in which independent observations of the same kind Y are taken until for the
first time ¥ =0 is observed: Let Z denote the number of times ¥ =1 is observed
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before termination of such an experiment. Then the distribution of Z is given
by fi(z)=(9)(.1)?, under Hy, and by fo(z) =(.1)(.9)?, under H,, for 2=0, 1,
2 - . .. The experiment Es can be represented as a mixture of simple binary
component experiments, among which is the component E. (described in Sec-
tion 4.3) consisting of a single observation Y'; this component is assigned prob-
ability .09 in the mixture experiment equivalent to Es. We recall that Ep also
admits a mixture representation, in which the component E. appears, assigned
probability .27. We may imagine two experimenters, using Ez and Eg respec-
tively for the same purpose of informative inference, and we may imagine a
situation in which the mathematical component experiments are realized phys-
ically by alternative measuring instruments as in our discussion of Ep in Sec-
tion 4.3. Then the first experimenter’s design Fz includes the equivalent of a
.27 chance of using the instrument represented by . (for a single observation);
and the second experimenter’s sequential design Eg includes the equivalent of
a .09 chance of using the same instrument (for one observation). If by chance
each experimenter obtained this instrument and observed a positive outcome
from it, then evidently the two results would have identical evidential mean-
ing (as (C) asserts). However the customary assignment of significance levels
would give such results the .028 significance level in the framework of Ep, and
the .01 significance level in the framework of Eg. Both of these differ from the
.10 error-probability which characterizes the common component experiment
E,. The latter value would be the intrinsic significance level assigned in the
interpretation suggested above; this value would be indicated immediately, in
any of the experimental frames of reference mentioned, by the common value 9
assumed by the likelihood ratio statistic N on each of the outcomes mentioned.

8. Finite parameter spaces. If E is any experiment with a parameter space con-
taining only a finite number & of points, these may conveniently be labeled 6 =1
=1,2, - - -, k. Any observed outcome z of E determines a likelihood function

LG)=cf(x, 1), =1, - - -, k. We shall consider evidential interpretations of
such likelihood functions in the light of the likelihood principle, in cases where
13
> f(@,9)
§=1

is positive and finite. (The remaining cases are special and artificial in a sense
related to technicalities in the role of density functions in defining continuous
distributions.) It is convenient here to choose ¢ as the reciprocal of the latter
sum, so that without loss of generality we can assume that

ﬁ: L@ = 1.

The present discussion formally includes the binary case, k=2, discussed above.
Any experiment E with a finite sample space labeled j=1, - - -, m, and
finite parameter space is represented conveniently by a stochastic matrix

P11+ * * Pim
E = (pj) = |- Sk
\Pr1 * * * Dkm
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where

Z pii =1,

i=1
and p.j=Prob[j l i], for each 4, j. Here the sth row is the discrete probability
distribution p;; given by parameter value ¢, and the jth column is proportional
to the likelihood function L(i)=L(il 7 =cps, 1=1, -+, k, determined by
outcome j. (The condition that

k
Z Pij
i=1

be positive and finite always holds here, since each p;; is finite, and since any 7
for which all p;;=0 can be deleted from the sample space without effectively
altering the model E.)

8.1. Qualitative evidential interpretations. The simplest nontrivial sample
space for any experiment is one with only two points, j=1, 2. Any likelihood
function L(z) (with

k
2 LG =1,
=1
which we assume hereafter) can represent an outcome of such an experiment,
for we can define
Prob[j = 1|4] = L) and Prob[j = 2|i] =1 — L),
fori=1, .- -,k

For example, the likelihood function L(z) =%, =1, 2, 3, represents the possi-
ble outcome j=1 of the experiment

E =

colt  calmt  CoOfmt
oy ey e

Since this experiment gives the same distribution on the two-point sample space
under each hypothesis, it is completely uninformative, as is any outcome of this
experiment. According to the likelihood principle, we can therefore conclude that
the given likelihood function has a simple evidential interpretation, regardless
of the structure of the experiment from which it arises, namely, that it repre-
sents a completely uninformative outcome. (The same interpretation applies
to a constant likelihood function on a parameter space of any form, as an essen-
tially similar argument shows.)

Consider next the likelihood function (1, 0, 0). (That is, L(1)=1, L(2)
=L(3) =0, on the 3-point parameter space =1, 2, 3.) This represents the pos-
sible outcome j=1 of the experiment

10
E=10 1].
01
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The outcome j=1 of E is impossible (has probability 0) under hypotheses =2
and 3 (but is certain under 7=1). Hence, its occurrence supports without risk
of error the conclusion that 7= 1. According to the likelihood principle, the same
certain conclusion is warranted when such a likelihood function is determined
by an outcome of any experiment. (Similarly any likelihood function which is
zero on a parameter space of any form, except at a single point, supports a con-
clusion of an essentially non-statistical, “deductive” kind.)

The likelihood function (3, %, 0) could have been determined by outcome
j=1of

i 1
2 2
E-|} %
01

This outcome of E is impossible under hypothesis 1=3, and hence supports
without risk of error the conclusion that 73 (that is, that =1 or 2). Further-
more, E prescribes identical distributions under hypotheses =1 and 2, and
hence the experiment F, and each of its possible outcomes, is completely unin-~
formative as between ¢=1 and 2. The likelihood principle supports the same
evidential interpretations of this likelihood function regardless of the experi-
ment from which it arose. (Parallel interpretations show that in the case of any
parameter space, any bounded likelihood function assuming a common value
on some set of parameter points is completely uninformative as between those
points.)

In the preceding experiment, the distinct labels =1 and 2 would ordinarily
be used to distinguish two hypotheses with distinct physical meanings, that is,
two hypotheses about some natural phenomenon which could be distinguished
at least in a statistical sense by a suitably designed experiment. The particular
experiment F is, as mentioned, completely uninformative as between these
hypotheses. Therefore if an experiment of the form E were conducted, it would
be natural for some purposes to describe the actual experimental situation in
terms of a two-point parameter space, labeled by 7'=1 or 2, and by the model

P
E = (py;) = .
@) (0 1)

Here i’ =2 stands just for the same simple hypothesis previously denoted by
i=31in E; ¢’ =1 represents a simple (one-point) hypothesis in this actual experi-
mental situation, but also represents the composite hypothesis previously de-
noted by i=1 or 2 in E. Such examples illustrate a sense in which even the speci-
fication of the number of points in the parameter space (of an adequate mathe-
matical-statistical model of an experiment) sometimes involves an element of
conventionality.

Consider the likelihood function (.8, .1, .1) on the 3-point parameter space
i=1, 2, 3. The interpretation that this likelihood function (or the outcome it
represents) has the qualitative evidential property of supporting the hypothesis
i=1, against the alternatives 1=2 or 3, is supported by various considerations
including the following: This likelihood function represents the outcome j=1 of
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.8 .2
E=|.1 .9 = (pij).
1.9

With use of E, if one reports the outcome j=1 as “supporting ¢=1" (in a
qualitative, merely statistical sense), and if one reports the remaining outcome
differently, for example as “not supporting ¢=1,” then one makes inappropriate
reports only with probability .1 when ¢=2 or 3, and only with probability. 2 if
1=1. (Without use of an informative experiment, such reports could be arrived
at only arbitrarily, with possible use of an auxiliary randomization variable,
and the respective probabilities of inappropriate reports would then total
unity.) This illustrates, in the familiar terms of error-probabilities of two kinds
defined in the framework of a given experiment, the appropriateness of this
qualitative evidential interpretation. According to the likelihood principle, the
same qualitative interpretation is appropriate when this likelihood function is
obtained from any experiment. (It can be shown similarly that on any param-
eter space, when any bounded likelihood function takes different constant
values on two respective “contours,” each point of the contour with greater
likelihood is supported evidentially more strongly than each point with smaller
likelihood.)

Consider the respective likelihood functions (.8, .1, .1) and (.45, .275, .275);
the latter is “flatter” than the first, but qualitatively similar. The interpretation
that the first is more informative than the second (and therefore that the first
supports 7=1 more strongly than the second) is supported as follows: Consider

8 .2
E=i.1 9 = (p,:j).
d .9

Consider also the experiment E’ based on E as follows: When outcome j=2 of
E is observed, an auxiliary randomization device is used to report “w=1” with
probability %, and to report “w=2" with probability }; when outcome j=1 of
E is observed, the report “w=1" is given. Simple calculations verify that E’ has
the form

9 .1
E =|.55 .45| = (D).
.55 .45

The outcome w=1 of E’ determines the likelihood function (.45, .275, .275)
given above (the latter is proportional to the first column of E’). The experi-
ment E’ is less informative that E, since it was constructed from £ by “adding
pure noise” (randomizing to “dilute” the statistical value of reports of out-
comes). In particular, the outcome w=2 of E’ is exactly as informative as the
outcome j=2 of E, since w=2 is known to be reported only when j=2 was ob-
served. But the outcome w=1 of E’ is less informative that the outcome j=1
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of E, since w=1 follows all outcomes j=1 of E and some outcomes j=2 of L.

The preceding example illustrates that some likelihood functions on a given
parameter space can be compared and ordered in a natural way. It can be shown
that some pairs of likelihood functions are not comparable in this way, so that
in general only a partial ordering of likelihood functions is possible. (An example
is the pair of likelihood functions (3, %, %) and (%, %, 1).) The special binary
case, k=2, is simpler in that all possible likelihood functions admit the simple
ordering corresponding to increasing values of A.

8.2. Intrinsic confidence methods. (Parts of the remainder of this paper where
finite parameter spaces are considered are closely related to reference [4].)
Consider the likelihood function (.90, .09, .01) defined on the parameter space
i=1, 2, 3. This represents the possible outcome j=1 of the experiment

.90 .01 .09
E=].09 .90 .01|= (pij).
.01 .09 .90

In this experiment, a confidence set estimator of the parameter ¢ is given by
taking, for each possible outcome 7, the two values of 7 having greatest likeli-
hoods L(z ] 7). Thus outcome j=1 gives the confidence set 1=1 or 2; j=2 gives
i=2 or 3; and 7=3 gives =3 or 1. It is readily verified that under each value
of %, the probability is .99 that the confidence set determined in this way will
include 7; that is, confidence sets 'determined in this way have confidence co-
efficient .99. For those who find confidence methods a clear and useful mode of
evidential interpretation, and who also accept the likelihood principle, it may
be useful for some interpretive purposes to consider the given likelihood func-
tion, regardless of the actual experiment from which it arose, in the framework
of the very simple hypothetical experiment E in which it is equivalent to the
outcome j=1, and where it determines the 99 per cent confidence set =1 or 2.
According to the likelihood principle, considering this outcome in the hypo-
thetical framework E does not alter its evidential meaning; moreover, any
mode of evidential interpretation which disallows such consideration is incom-
patible with the likelihood principle. Of course the standard meanings of con-
fidence sets and their confidence levels are determined with reference to actual
experimental frames of reference (or sometimes actual-conditional ones) and
not hypothetically-considered ones. Hence in the present mode of evidential
interpretation, the hypothetical, conventional role of the experimental frame
of reference E must be made clear. This can be done by use of the terms “intrin-
sic confidence set” and “intrinsic confidence coefficient (or level)” to refer to
confidence statements based in this way on a specified conventionally-used
experimental frame of reference such as E.

With the same experiment E, if for each j we take the single most likely
parameter point, namely ¢=4, we obtain a one-point confidence set estimator
with intrinsic confidence coefficient .90. Thus the given likelihood function,
arising from an experiment of any form, determines the intrinsic confidence set
i=1, with intrinsic confidence coefficient .90; the latter terms, again, are fully
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defined only when the form of the conventionally-used experiment F is indi-
cated.

The general form of such intrinsic confidence methods is easily described as
follows, for any likelihood function L(z) defined on a finite parameter space
t=1, -+ -, k, and such that

k

2 Le) =1:

il
If there is a unique least likely value 7y of 7 (that is, if L(4) <L(3) for i5%4”), let
¢1=1—L(¢;). Then the remaining (k—1) parameter points will be called an in-
trinsic confidence set with intrinsic confidence coefficient ¢;; if there is no unique
least likely value of 7, no such set will be defined (for reasons related to the
earlier discussion of points with equal likelihoods). If there is a pair of values of
1, 82y 13, 1z, with likelihoods strictly smaller than those of the remaining (k—2)
points, call the latter set of points an intrinsic confidence set, with intrinsic con-
fidence level ¢;=1—L(%;) — L(%;). And so on. The experiment in which such
confidence methods are actual as well as intrinsic confidence methods will
always be understood to be

L) L - - - L))
L(2) LQ) L@3)|
E = L(.3) L(.2)

L) L(k—-1) L(1)

E is determined uniquely from the given L(z) by taking the latter to determine
the respective first-column elements, and then by completing E so that it is a
“cyclic-symmetric” matrix, as illustrated (satisfying pi;j=pi,j= for all i, j,
with a subseript ¢ or =0 here replaced by the value k).

By using here the basic technical relations between (ordinary) confidence
methods and significance tests, we can obtain certain interpretations of the
hypothesis-testing form from intrinsic confidence methods. For example, if a
simple hypothesis ¢=1 is of interest, and if a likelihood function L(¢) from any
experiment leads to an intrinsic .99 confidence set containing 7=1, the outcome
can be interpreted as “not intrinsically significant at the .01 level.” If the same
likelihood function determines an intrinsic .95 confidence set not containing
i=1, this can be interpreted as “intrinsically significant at the .05 level,” or
“supporting rejection of 7=1 at the .05 intrinsic significant level.” Here, in con-
trast with the special binary case k=2, a single interpretive phrase like the
latter does not incorporate unambiguous reference to the power of a correspond-
ing test defined in E; nor does a single intrinsic confidence set report automati-
cally incorporate such reference. On the other hand, a report of the set of all
intrinsic confidence sets, with their respective levels, as defined above, does
incorporate such reference, for it is readily seen that such a report determines
uniquely the form of the likelihood function which it interprets. (Systematic
use of confidence methods rather than significance tests, when possible, and of
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sets of confidence sets at various levels has been recommended by a number
of recent writers; cf. [22], [23], [24], [15], [5] and references therein.)

An important category of problems is that involving several real-valued
parameters, in which suitable estimates or tests concerning one of the param-
eters are of interest, the remaining parameters being nuisance parameters.
Many such problems can be considered in miniature in the case of a finite
parameter space, for example by labeling the parameter points by (u, v),
u=1, - k', v=1, .- k", giving k=Fk’k’’ points in all. Then intrinsic confi-
dence sets for the parameter w can be defined, despite presence of the nuisance
parameter v, by a generalization of the preceding discussion which includes a
more general scheme for defining convenient relatively simple conventional
experimental frames of reference.

9. More general parameter spaces. Suppose that the parameter space of interest
is the real line, and that one wishes to make interpretations of the interval-
estimate type based on the outcome of some experiment. Let L(f) denote the
likelihood function determined by an outcome of that experiment, and con-
sider the hypothetical experiment E which gives outcomes y, — o <y< o,
having for each 6 the probability density function g(y, 6) =cL(6—y) and the
corresponding cumulative distribution

v
Gy, 0) = cf L6 — w)du.
We restrict our discussion to likelihood functions for which
1 0
— = f L(0)d6
c —c0

exists and is positive and finite, so that the preceding definitions are applicable.
In such an experiment E, 6 is called a translation-parameter, since increasing 6
shifts the density function to the right without altering its shape. In this ex-
periment, the outcome y=0 determines the given likelihood function L(§).

In any such experiment, a standard technique for construction of confidence
limits is the following: For each y, let 6’(y) be a value of 6 satisfying G(y, 6) =.95,
and let 6’’(y) be a value of 6 satisfying G(y, 6) =.05. Then 6’(y) and 6’'(y) are
(ordinary) .95 confidence limits, and together they constitute a .90 confidence
interval, for estimation of  in E; when y=0 is observed, these become 6’(0)
and ¢’/(0). By definition, we take the latter to be respective .95 intrinsic confi-
dence limits for 6, and we take these together to constitute a .90 intrinsic confi-
dence interval for 6; these terms are taken to incorporate automatic reference
to the translation-parameter experiment E defined as above on the basis of
the given likelihood function L(6). Certain generalizations from this case are
obvious.

As in the case of finite parameter spaces, intrinsic confidence concepts include
systematic unambiguous use of conveniently-chosen conventional experimental
frames of reference. In the light of the likelihood principle, evidential meanings
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of likelihood functions cannot be altered when they are interpreted in hypo-
thetical experimental frames of reference, and this provides a useful way of
simplifying inessential features, and of relating unfamiliar problems of evi-
dential interpretation to familiar ones where familiar methods can be applied.
But it would be unfortunate if such methods as intrinsic confidence methods
were adopted without sufficiently deep appreciation of the role played by the
conventionally-chosen frames of reference. For example, under a simple non-
linear transformation of the parameter space such as 6%=6% the physical and
mathematical meaning of inference methods is unchanged; but if the parameter
space of points 6 is replaced in the above discussion by points 6* =63, the likeli-
hood function L(f) must be replaced by the (evidentially equivalent) one
L*(6*) = L*(6%) = L((6*)'/%). The latter function of §* has a different form from
the function L(f) of 6, and would lead in the above discussion to more or less
different intrinsic confidence statements. In this connection one may therefore
give considerations to scalings or labelings of the parameter space which are of
particular interest in connection with the subject-matter of an experiment.
Another consideration, which will not always coincide closely with the first,
is that the adoption of a suitable scaling of the parameter space may allow
technical or formal simplicity in the application and interpretation of intrinsic
confidence methods. For example, if L(6) has the form of a normal density
function (to within a constant c), then intrinsic confidence methods coincide
formally with readily-applicable standard confidence methods for estimation of
the mean of a normal distribution. Here the density function g(y, 6) =cL(6 —y)
is formally a normal density function of y, for each 8, with standard deviation
which we shall denote by ;. When y=0 we have the actual likelihood func-
tion under consideration, cL(6); let § denote the value of  which maximizes this
function. This is of course the maximum likelihood estimate, §=4(z), where =
is the outcome of any actual experiment which determines such a likelihood
function. The translation-parameter experiment E defined as above now repre-
sents one in which a single observation y is taken from a normal distribution
with known standard deviation ¢ and with unknown mean E(Y) = pu=0—§(x).
(Recall that our parameter 6 is not in general the mean x of Y in this derived
experiment; in general these are different, by the amount 8(x). Recall also that
the latter is a known number determined from the given L(6).) Finally, when
y =0 is observed, the classical estimate of x is p=y =0, and correspondingly the
classical estimate of the linear function of u, 6=u+4(z), is' 6=4(z). In the
framework of E, the outcome represented by the given L(f) is thus easily
interpreted in various standard ways, including confidence intervals; all of
these are in a sense summarized by stating simply that 8 has the estimate 8(x)
with the known standard error ¢j, and that the estimation problem has the
familiar structure of the simplest standard problem of estimation of a normal
mean. To take advantage of the familiarity and simplicity of experiments like
E, whenever a likelihood function cL(f) has the form of a normal density func-
tion, we shall call the standard deviation of that distribution, denoted o3, the
intrinsic standard error of an estimate; and shall use this term in conjunction
with the maximum likelihood estimate 8(z) because in the framework of E the
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latter plays the role of the classical best estimate. (A parallel discussion can be
given for the case of likelihood functions ¢L(6) which have approximately the
form of a normal density. The corresponding evidential interpretations are ap-
proximate in ways which depend in detail on the nature of the “closeness” of
L(8) to the normal form.) An easy calculation of ¢ is based on the observa-
tion that

-1 @

— = —log L(6).
e og L(6)

An important class of problems involving nuisance parameters are those in
which sampling is performed non-sequentially or sequentially from a normal
distribution with unknown mean u and unknown standard deviation ¢. Stand-
ard confidence methods are not easily and efficiently applicable for estimation
of the mean in the case of sequential sampling, but in the non-sequential case
the standard methods based on the {-distribution are applicable (and known to
be efficient in various senses). Now the form of the likelihood function deter-
mined in any such sequential experiment coincides with that obtainable in a
simple non-sequential experiment; and the form of such a likelihood function
is always determined by the three numbers (statistics) N =sample size (number
of observations, whether or not sequential sampling was used), i =sample mean
(the simple mean of all observations), and s? the sample variance (computed
from all observations by the standard formula which gives unbiased estimates
of variance in the non-sequential case). It is convenient to call the confidence
methods, based on these statistics in the way which is standard for the non-
sequential case, inirinsic confidence methods for estimation of the mean of a
normal distribution with unknown variance. Clearly any mode of evidential
interpretation which would interpret such a set of statistics differently in the
sequential and non-sequential cases is incompatible with the likelihood princi-
ple. The general approach illustrated here can clearly be readily applied in
many other classes of problems. It will perhaps bear repetition, for emphasis,
that all such methods as intrinsic significance levels, intrinsic confidence meth-
ods, and intrinsie standard errors, can, in the light of the likelihood principle,
be nothing more than methods of expressing, in various ways, evidential mean-
ing which is implicit in given likelihood functions.

10. Bayesian methods: an interpretation of the principle of insufficient reason.
In the method of treating statistical inference problems which was initiated by
Bayes and Laplace, it was postulated that some mathematical probability
distribution defined on the parameter space, the “prior distribution,” repre-
sents appropriately the background information, knowledge, or opinion, avail-
able at the outset of an experiment; and that this, combined with experimental
results by use of Bayes’ formula, determines the “posterior distribution” which
appropriately represents the information finally available. This formulation is
widely referred to as Bayes’ principle (or postulate), and we shall denote it by
(B). (In this general form it should perhaps be credited to Laplace.) The extra-
mathematical content of this principle has been interpreted in several ways by
various of its proponents as well as critics [11, pp. 6-12]. This approach in
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general is not directed to the problem of informative inference, but rather to
the problem of using experimental results along with other available informa-
tion to determine an appropriate final synthesis of available information. How-
ever it is interesting to note that within this formulation the contribution of
experimental results to the determination of posterior probabilities is always
characterized just by the likelihood function and is otherwise independent of
the structure of an experiment; in this sense we may say that (B) implies (L).

10.1. The prineciple of insufficient reason, which we shall denote by (P.I.R.), is
the special case of (B) in which a “uniform prior distribution” is specified to
represent absence of background information or specific prior opinion. Evi-
dently the intention of some who have developed and used methods based on
(P.I.R.) has been to treat, in suitably objective and meaningful terms, the
problem of informative inference as it is encountered in empirical research situa-
tions. This case of (B) was of particular interest to early writers on Bayesian
methods. Following Laplace, this approach was widely accepted during the
nineteenth century. Analysis and criticism, notably by Boole [6] and Cournot,
of the possible ambiguity of the notion of “uniformity” of prior probabilities,
and of the unclear nature of “prior probabilities” in general, led later to a wide-
spread rejection of such formulations. The principal contemporary advocate of
this approach is Jeffreys [13].

It is at least a striking coincidence that when experiments have suitable sym-
metry (or analogous) properties, inference methods based upon (P.I.R.) coin-
cide exactly in form (although they differ in interpretation) with various mod-
ern inference methods developed without use of prior probabilities. For ex-
ample, if any experiment E with a finite parameter space happens to be cyclic-
symmetric, then uniform prior probabilities (1/k on each parameter point)
determine posterior probability statements which coincide in form with ordi-
nary confidence statements. As a more general example, if £’ has a k-point
parameter space but any structure, it is easily verified that such posterior prob-
ability statements coincide in form with the intrinsic confidence statements de-
termined as in Section 8 above. It follows that, leaving aside questions of extra-
mathematical interpretation of (P.I.R.) itself, (P.I.R.) can be taken as a formal
algorithm for convenient calculation of intrinsic confidence statements in the
many classes of problems where such agreement can be demonstrated.

When the parameter space is more general, the “uniform distribution” has
usually been chosen as some measure which is mathematically natural, for
example Lebesgue measure on a real-line parameter space, even when such a
measure does not satisfy the probability axiom of unit measure for the whole
(parameter) space. In such cases again the posterior probabilities determined
by formal application of Bayes’ formula agree in form with ordinary or condi-
tional confidence statements when an experiment has suitable symmetry-like
(translation-parameter) properties; and more generally, such posterior prob-
ability statements agree in form with the intrinsic confidence statements de-
scribed in Section 9 above. Furthermore the questions of conventionality, con-
cerning the specification of a “uniform” distribution in such cases, are exactly
parallel in form to the features of conventionality of choice of experimental
frame of reference discussed in Section 9.
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10.2. A posterior probability statement determined by use of (P.I.R.) can be
interpreted formally as merely a partial description of the likelihood function
itself; and a sufficient number of such statements, or specification of the full pos-
terior distribution, determine the likelihood function completely (provided the
definition of “uniform” prior distribution is indicated unequivocally). This
interpretation of (P.I.R.) makes it formally acceptable (in accord with (L))
as a solution of the first problem of informative inference, the mathematical
characterization of evidential meaning. But this interpretation does not ascribe
to (P.I.R.) any contribution to the second problem of informative inference,
evidential interpretation, and does not include any specific interpretation of
prior and posterior probabilities as such. On the interpretation mentioned, a
posterior probability distribution might as well be replaced by a report of just
the likelihood function itself. (On the basis of (L), without adoption of (P.I.R.)
or (B), the absence of prior information or opinion admits a natural formal
representation by a likelihood function taking any finite positive constant
value, for example L(9) =1. Such a likelihood function is determined formally,
for example, by any outcome of a completely uninformative experiment. Since
likelihood functions determined from independent experiments are combined
by simple multiplication, such a “prior likelihood function” combines formally
with one from an actual experiment, to give the latter again as a final over-all
“posterior” one.)

10.3. A more complete explication of (P.I.R.) is suggested by the close formal
relations indicated above between intrinsic confidence statements and state-
ments based on (P.I.R.). Writers who have recommended (P.I.R.) methods
use the term “probability” in a broad sense, which includes both the sense of
probabilities Prob(4 | 6) defined within the mathematical model E of an experi-
ment (which admit familiar conceptual frequency interpretations), and the
sense in which any proposition which is supported by strong evidence is called
“highly probable” (the latter sense, according to some writers, need not neces-
sarily be given any frequency interpretation). It is in the latter sense that a high
posterior probability seems to be interpreted by some writers who recommend
(P.I.R.). Now the present analysis has led to the likelihood function as the
mathematical characterization of statistical evidence, and to intrinsic confi-
dence statements as a possible mode of evidential interpretation. In the latter,
an intrinsic confidence coefficient plays the role of an index of strength of evi-
dence; such a coefficient is determined in relation to probabilities defined in a
mathematical model of an experiment (generally a hypothetical one), but such
an index is not itself a probability of the confidence statement to which it is at-
tached. However in the broad usage described above, such an index of strength
of evidence can be called a probability. Such an index becomes also a (poste-
rior) probability in the mathematical sense when a “uniform” prior distribution
is specified; but we can alternatively regard the latter formalism as merely a
convenient mathematical algorithm for calculating intrinsic confidence sets
and their intrinsic confidence coefficients. Under the latter interpretation, the
principle of insufficient reason does not constitute an extra-mathematical



FOUNDATIONS OF STATISTICAL INFERENCE 301

postulate, but stands just for a traditional mode of calculating and designat-
ing intrinsic confidence sets and their coefficients.

11. An interpretation of Fisher’s fiducial argument. Fisher’s program of develop-
ing a theory of fiducial probability is evidently directed to the problem of in-
formative inference. This approach agrees with the traditional one based on
the principle of insufficient reason, that statements of informative inference
should have the form of probability statements about parameter values; but
disagrees concerning appropriateness of adopting the principle of insufficient
reason for determination of such statements (Fisher [9]). Such probabilities are
defined by a “fiducial argument” whose full scope and essential mathematical
structure have not yet been fully formalized. Nevertheless some of the mathe-
matical and extra-mathematical features of this approach seem clear enough for
discussion in comparison with the approaches deseribed above.

In experiments with suitable symmetry (or analogous) properties, it has
been recognized that fiducial methods coincide in form (although they differ in
interpretation) with ordinary or conditional confidence methods. In more com-
plex experiments such a correspondence does not hold; and Fisher has stated
that in general fiducial probabilities need not be defined in an actual or actual-
conditional experimental frame of reference, but in general may be defined in
different conceptually-constructed but appropriate frames of reference. This
fact, and the fact that symmetry (or mathematical transformation-group)
properties of experimental frameworks play a prominent part in the fiducial
argument, suggest that the frames of reference in which fiducial probabilities
are to be considered defined may coincide in general with those in which in-
trinsic confidence methods are defined as in Sections 8 and 9 above.

The claim that fiducial probabilities are probabilities of the same kind dis-
cussed by the early writers on probability can perhaps be understood in the
same general sense that “posterior probabilities” calculated under the princi-
ple of insufficient reason were interpreted in Section 10, that is, a high fiducial
probability for a parameter set may be interpreted as an index of strong evi-
dential support for that set. And the claim that such probabilities can be de-
fined and interpreted independently of any extra-mathematical postulate such
as (P.I.R.) could be interpreted in the same general sense as in the explication
of (P.I.R.) suggested above in which the latter principle does not constitute an
extra-mathematical postulate. In the latter interpretation, the fiducial argu-
ment would appear to be another purely mathematical algorithm for calculat-
ing statements of evidential interpretation.

These interpretations suggest that fiducial probability methods may in gen-
eral coincide in form as well as in general intention with intrinsic confidence
methods (and hence also with those based on (P.I.R.) as interpreted above);
and that these approaches may differ only in their verbal and mathematical
modes of expression.

The fiducial argument has usually been formulated in a way which does not
apply to experiments with discrete sample spaces, nor to experiments lacking
suitable symmetry properties. However, it is possible to formulate a version of
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the fiducial argument compatible with (L) which is free of such restrictions:
If E=(ps;) is any cyclic-symmetric experiment with a k-point parameter space,
consider for each ¢ the sufficient statistic

. Jj—i+1], if the latter is positive,
t(.?; 1) =

j—t1+ 14k otherwise.

When ¢ is true, the corresponding statistic {(4, 7) has the distribution Prob(¢(J, 2)
= tI 1) =p1, t=1, - - -, k. The form of the latter distribution is the same for each
value of 7, and hence can be written Prob({(J, %) =t) =p1.. (A family of sta-
tistics (4, ©) with the latter property is a “pivotal quantity” in the usual termi-
nology of the fiducial argument.) For each possible outcome j of E we define a
mathematical probability distribution on the parameter space, the “fiducial
distribution” determined by the observed value j, by

Prob(i| j) = Prob(t(j, I) = ) = pu, where t = i(j, 9).
Using the definition of {(j, 7) and the cyclic symmetry of E, this simplifies to
Prob(i| ) = pii.

Thus the fiducial distribution coincides here with the posterior distribution de-
termined from (P.I.R.) and also with the likelihood function itself. The fiducial
probability statements here will thus agree in form with posterior probability
statements based on (P.I.R.) and also with ordinary confidence statements.

Next, suppose that E’ is any experiment with a k-point parameter space, and
consider the problem of evidential interpretations of an outcome of E’ which
determines a likelihood function L(z). Under (L), the evidential meaning of
L(z) is the same as if L(s) were determined by an outcome of a simple cyclic-
symmetric experiment; and in the latter case, the fiducial statements deter-
mined as above would be formally available. Thus it seems appropriate to the
general intention of the fiducial approach, and in accord with (L), to define the
fiducial distribution by

k
LG) / 22 L@)

=
where L(¢) is the likelihood function determined by any outcome of any experi-
ment E’ with a k-point parameter space, without restriction on the form of E’.
Under this interpretation, the intrinsic confidence statements described in Sec-
tion 8, and the posterior probability statements described in Section 10, would
also correspond formally with fiducial probability statements. Perhaps similar
correspondences can be traced in other classes of problems where the fiducial
argument takes somewhat different forms.

12. Bayesian methods in general. As was mentioned in Section 10, Bayesian
methods in general entail adoption of (L) for the delimited purpose of charac-
terizing experimental results as actually used in such methods. In particular,
for communication of any instance (&, z) of statistical evidence to one who will
use or interpret it by Bayesian methods, it is sufficient (and in general neces-
sary) to communicate just the corresponding likelihood function.
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Much discussion of the differences between Bayesian methods in general and
non-Bayesian statistical methods has centered on the likelihood principle.
Hence it is of interest to consider here those distinctions and issues which may
separate Bayesian methods in general (apart from (P.I.R.)) from methods and
interpretations based on (L) but not (B). Such differences are not related to
problems of informative inference, but concern problems of interpretation
and/or use of likelihood functions, along with appropriate consideration of
other aspects of an experimental situation including background (“prior”)
information, for scientific and/or utilitarian purposes.

Consider any binary experiment £ concerning the statistical hypotheses Hj,
H,, in any situation of inference or decision-making where a certain “conclu-
sion” or decision d would be adopted if the experimental outcome provides
evidence supporting H, with sufficient strength. Apart from the simplicity of
the binary case, evidently many inference situations can be described appropri-
ately in such terms. Then it follows, from (L) and from the discussion of the
evidential properties of the statistic A in the binary case, that there is some
critical value N’ such that the decision d would be adopted if and only if the out-
come X of E satisfies A\>N\’. The latter formulation can be recognized as appro-
priate and adopted, with some choice of A\’ which seems appropriate in the
light of the various aspects and purposes of the inference situation, along with
some appreciation of the nature of statistical evidence as such; evidently this
can be done by experimenters who adopt the likelihood principle but do not
adopt Bayes’ principle.

Consider alternatively, in the same situation, another experimenter whose
information, judgments, and purposes are generally the same but who adopts
and applies Bayes’ principle. He will formulate his judgments concerning prior
information by specifying numerical prior probabilities py, ps, for the respective
hypotheses Hy, H,. He might formulate his immediate experimental purpose,
if it is of a general scientific sort, by specifying that he will adopt the working
conclusion d provided the posterior probability ¢, of d is at least as large as a
specified number ¢,’. Or if his experimental purpose is of a more utilitarian sort,
he might specify that he will adopt the decision d provided that ¢,U,>qU,,
where ¢, ¢» are respective posterior probabilities and U;, U, are numerical
“utilities” ascribed respectively to non-adoption of d when H, is true and to
adoption of d when H, is true. Each such formulation leads mathematically to a
certain critical value N’/ of the statistic A and to an inference or decision rule of
the form: Adopt d provided E yields an outcome A >\’"'. Thus there is no dif-
ference between the “patterns of inference or decision-making behavior” of
Bayesian statisticians and of non-Bayesian statisticians who follow the likeli-
hood prineiple, at least in situations of relatively simple structure. And, at least
for such simple problems, one might say that (L) implies (B) in the very broad
and qualitative sense that use of statistical evidence as characterized by the
likelihood function alone entails that inference- or decision-making behavior
will be externally indistinguishable from (some case of) a Bayesian mode of
inference.

Some writers have argued that the qualitative features of the Bayesian mode
of inference seem plausible and appropriate, but that the specification of defi-
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nite numerical prior probabilities and the interpretation of specific numerical
posterior probabilities seem less clearly appropriate and useful. (This viewpoint
has been presented interestingly, with some detailed examples, by Polya [16].)
The present writer hopes to see more intensive discussion, with detailed illustra-
tion by concrete examples, of the specific contributions which qualitative-
Bayesian and quantitative-Bayesian formulations may have to offer to those
statisticians who adopt the likelihood principle and interpret likelihood func-
tions directly, making informal judgments and syntheses of the various aspects
of inference or decision-making situations.

13. Design of experimenis for informative inference. If an experiment is to be
conducted primarily for purposes of informative inference, then according to
(L) the various specific experimental designs £ which are available are to be
appraised and compared just in terms of the likelihood functions they will de-
termine, with respective probabilities, under respective hypotheses, along
with consideration of experimental costs of respective designs.

In the case of binary experiments, what is relevant is just the distribution
of the statistic \, defined in any binary experiment, under the respective hy-
potheses. The simplest specification of a problem of experimental design is
evidently that a binary experiment should, with certainty, provide outcomes M
with evidential strength satisfying: I)\l >\, where M\ is a specified constant;
for example, M’ =99 indicates that each possible outcome of the experiment is
required to have evidential strength associated (as in Section 7) with error-
probabilities not exceeding .01. In experimental situations allowing sequential
observation, it was shown in reference [3] that such a specification is met effi-
ciently, in terms of required numbers of observations, by a design based on the
sampling rule of Wald’s sequential probability ratio test (with nominal error-
probabilities both .01). If this sequential design is not feasible, some modifica-
tion of the specified design criterion is indicated. For example, if only non-
sequential designs are allowed, and a sample-size is to be determined, then in
general one can guarantee only more or less high probabilities, under each hy-
pothesis, that an experimental outcome will have at least the specified eviden-
tial strength.

Similarly, to obtain an intrinsic .95 confidence interval for the mean of a
normal distribution with unknown variance, of length not exceeding a given
number D, an efficient fully-sequential sampling rule is one which terminates
when for the first time the .95 confidence interval, computed from all observa-
tions as if sampling were non-sequential, has length not exceeding D.

In general, such considerations concerning the design of experiments for in-
formative inference under (L) lead to mathematical questions whose answers
will often be found within the mathematical structures of the statistical the-
ories of Fisher, Neyman and Pearson, and Wald, although these theories are
typically used and interpreted differently, even for purposes of informative in-
ference. For example, the distributions of the statistic A in any binary experi-
ment (which under (L) are basic for experimental design but irrelevant to evi-
dential interpretation) are represented mathematically by the “«, 8 curve,”
which represents the binary experiment, and is the focus of attention in the
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Neyman-Pearson and Wald treatments of binary experiments. More generally,
the power functions of various tests admit interpretations relevant to experi-
mental design under (). And Fisher’s asymptotic distribution theory of maxi-
mum likelihood estimates can be interpreted, as Fisher has indicated, as de-
scribing the asymptotic distributions, under respective hypotheses, of the likeli-
hood function itself (at least in an interval around its maximum).

Clearly the problems of experimental design under (L) are manifold and
complex, and their fruitful formulation and solution will probably depend on
increased interest in and use of likelihood functions as such. Some of these
problems of experimental design coincide in form with design problems as
formulated by Bayesian statisticians [17]. Thus there is scope for interesting
collaboration here between statisticians with somewhat different over-all view-
points.
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