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ALLAN BIRNBAUM* 

THE NEYMAN-PEARSON THEORY AS DECISION 

THEORY, AND AS INFERENCE THEORY; WITH A 

CRITICISM OF THE LINDLEY-SAVAGE ARGUMENT 

FOR BAYESIAN THEORY 

1. INTRODUCTION AND SUMMARY 

The concept of a decision, which is basic in the theories of Neyman 

Pearson, Wald, and Savage, has been judged obscure or inappropriate 
when applied to interpretations of data in scientific research, by Fisher, 

Cox, Tukey, and other writers. This point is basic for most statistical 

practice, which is based on applications of methods derived in the 

Neyman-Pearson theory or analogous applications of such methods as 

least squares and maximum likelihood. Two contrasting interpretations 
of the decision concept are formulated: behavioral, applicable to 'deci 

sions' in a concrete literal sense as in acceptance sampling; and evidential, 

applicable to 'decisions' such as 'reject H{ in a research context, where 

the pattern and strength of statistical evidence concerning statistical 

hypotheses is of central interest. Typical standard practice is charac 

terized as based on the confidence concept of statistical evidence, which is 

defined in terms of evidential interpretations of the 'decisions' of decision 

theory. These concepts are illustrated by simple formal examples with 

interpretations in genetic research, and are traced in the writings of 

Neyman, Pearson, and other writers. The Lindley-Savage argument for 

Bayesian theory is shown to have no direct cogency as a criticism of 

typical standard practice, since it is based on a behavioral, not an 

evidential, interpretation of decisions. 

2. TWO INTERPRETATIONS OF DECISIONS' 

Statistical decision problems are the subject of major theories of modern 

statistics, and have been developed with great precision and generality on 

the mathematical side. But in the view of many applied and theoretical 
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20 ALLAN BIRNBAUM 

statisticians, the scope and interpretation of decision theories has 

remained obscure or doubtful in connection with interpretations of data 

in typical scientific research situations. 

The reason for concern here is that most statistical methods applied to 

research data have been given their most systematic mathematical jus 
tification within the Neyman-Pearson theory; and that theory in turn 

has been given its most systematic mathematical development within the 

(non-Bayesian) statistical decision theory initiated by Wald. In this 

development the alternative statistical hypotheses which may be 're 

jected' or 'accepted' on the basis of a testing procedure are identified 

with the respective 'decisions' appearing in the formal model of a 

decision problem. 

Similarly, each confidence interval which may be determined by an 

estimation procedure is identified with one of the 'decisions' of a model. 

This leads to questions about the scope and interpretation of the 'deci 

sion' concept which have been discussed by a number of writers: In what 

sense, if any, it is appropriate to regard the results of typical scientific data 

analysis based on standard statistical methods of testing and estimation as 

decisions? 

We shall treat this question in a way which is self-contained, and more 

systematic in some respects than previous discussions. Our intention is to 

complement and clarify previous discussions in certain respects, without 

attempting to review or summarize them. The interested reader is urged 
to read or re-read such earlier discussions, particularly those of Tukey 

(1960), Cox (1958, p. 354), and others cited below. 

The terms 'decide' and 'decision' were used heavily by Neyman and 

Pearson in the series of joint papers which initiated their theory, notably 
in the preliminary exploratory paper of 1928, and in the 1933 paper in 

which problems of testing statistical hypothesis were first formulated in a 

way which can be regarded as a case of statistical decision problems. 
A frequently cited ('paradigm') type of application of statistical deci 

sion theories and of the Neyman-Pearson theory is that of industrial 

acceptance sampling (Neyman and Pearson, 1936, p. 204; Wald, 1950, 

pp. 2-3): A lamp manufacturer must decide whether or not to place a 

batch of lamps on the market, on the basis of tests on a sample from the 

batch. 
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The simplest models of decision problems are characterized fully, for 

our present purposes of discussion, by sch?mas of the following form: 

Simple hypotheses: Hx, H2 

Possible decisions: dx, d2 

Error probabilities: a = Prob [?i|Hi], ? 
= Prob [d2\H2] 

A simple hypothesis is any probability distribution which may be defined 

over the range of possible outcomes (the sample space) of an experiment 
or observational procedure. 

For example, the lamp manufacturer may be interested in the simple 

hypothesis H1 that a batch of lamps contains exactly 4% defective lamps, 
and in the alternative simple hypothesis H2 that the batch contains 

exactly 10% defectives, possibly because a batch is considered definitely 

good if it has 4% or fewer defectives, and is considered definitely bad if it 

has 10% or more defectives. 

For a given batch, his possible decisions are: 

di: withhold the batch from the market; and 

d2: place the batch on the market. 

The performance of any decision function (that is any rule for using data 

on a sample of lamps from the batch to arrive at a decision d\ or d2) is 

characterized fully, under Hi and H2, by the respective error prob 
abilities a and ? defined in the schema. (An example of a decision 

function here is the rule: Place the batch on the market if and only if fewer 

than 3 defectives are found in a random sample of 25 lamps.) 
Consider the interpretation of the decisions dx and d2 which appear in 

the schema, in its application to the problem of the lamp manufacturer. 

When the manufacturer places a batch of lamps on the market, he 

performs an action. If he does so after considering also one or more 

alternative possible actions, as in our example, then he has taken a 

decision in favor of that action. 

Here the terms 'decision' and 'action' refer to the behavior of the 

manufacturer in a simple direct and literal way. We shall use the term 

behavioral interpretation of the decision concept to refer to any compara 

bly simple, direct, and literal interpretation of a 'decision' appearing in a 

formal model of a decision problem.1 
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The behavioral interpretation must be criticized and rejected, in the 

view of many investigators and statisticians, when such a schema and 

model are applied in a typical context of scientific research in connection 

with standard methods of data analysis. Convenient examples may be 

drawn from genetic linkage studies, which have the general scientific goal 
of extending knowledge of the 'chromosome map' which largely charac 

terizes a species or strain in classical Mendelian genetics.2 
Consider an investigator who judges that his linkage studies provide 

very strong evidence that two genetic loci lie on the same chromosome 

(with the usual appreciation that future studies could conceivably reverse 

his judgement); and who reports his conclusion, together with a summary 
of his data and his interpretation of it, based in part on use of a test 

determined by applying the Neyman-Pearson theory (as in Morton, 

1955, or Smith, 1953, pp. 180-3), in a research journal. 
His conclusion favoring the scientific hypothesis of linkage corresponds 

in some way to a 'decision' dx in a schema like that above, where now Hx 
is the statistical hypothesis characterizing no linkage. It is the nature of 

this correspondence which we wish to examine carefully. 

3. STATISTICAL EVIDENCE, AND ITS INADEQUATE 

REPRESENTATION BY THE DECISIONS' OF DECISION THEORY 

The problem of testing statistical hypotheses is often described (in the 

Neyman-Pearson papers and elsewhere) as a problem of deciding 
whether or not to 'reject a statistical hypothesis' such as Hx (e.g. Neyman 
and Pearson, 1928, p. 1; 1933, p. 291). This suggests the interpretation 

given by most writers who formulate problems of testing as decision 

problems: 

dx: reject Hx 

d2: do not reject//!. 

But this interpretation leads immediately to the question: What is the 

interpretation of 'reject Hx in, for example, the situation of the inves 

tigator of our example who concluded that linkage was present? 
Even if the geneticist uses typical terminology such as 'reject Hx, the 

hypothesis of no linkage,' neither he nor his colleagues understand that 
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he is making a decision in any literal and unqualified sense which could be 

given a behavioral interpretation closely comparable with that of the 

lamp manufacturer's decision in the example above. 

Rather, the decision-like term 'reject' expresses here an interpretation 
of the statistical evidence, as giving appreciable but limited support to one 

of the alternative statistical hypotheses. This evidential interpretation of 

the experimental results is in principle based on a complete schema of the 

kind indicated above, even when this is only implicit. 
In this essential respect, the identification suggested above between 

'reject Hx and the single element dx of the schema is inadequate, and is 

misleading when taken out of the context of the schema. Such cases of 

statistical evidence are adequately represented by symbols like 

d\*: (reject Hx for H2, a, ?) 

and 

d2 : (reject H2 for Hx, a, ?), 

each of which carries an indication of the complete schema which serves 

as the conceptual frame of reference for the interpretation of statistical 

evidence here. 

The symbols d* and d2 represent in prototype typical interpretations 
and reports of data treated by standard statistical methods in scientific 

research contexts. 

We shall use the term evidential interpretation of the decision concept 
to refer to such applications of models of decision problems; and we shall 

use the term confidence concept of statistical evidence to refer to such 

interpretations of statistical evidence. 

In the view of this writer and some others, although typical applications 
of standard statistical methods in research are of the kind we have 

illustrated, the central concepts guiding such applications and interpreta 
tions (for which we have introduced the terms in italics above) have not 

been defined within any precise systematic theory of statistical inference. 

Rather, these concepts exist and play their basic roles largely implicitly 
and unsystematically, in guiding applications and interpretations of stan 

dard methods, and in guiding the development of new statistical methods. 

We shall not offer any precise theoretical account of these concepts, nor 

even claim that such an account can be given. Our aims are limited to 



24 ALLAN BIRNBAUM 

illustrating the existence and wide scope of the confidence concept, and 

clarifying some of its features. 

The confidence concept seems to be in part a primitive intuitive 

concept of statistical evidence associated with sch?mas of the above kind, 
which may be expressed in the following prototypic formulation: 

(Conf): A concept of statistical evidence is not plausible unless it finds 

'strong evidence for H2 as against Hx with small probability (a) 
when Hx is true, and with much larger probability (1-/3) when 

H2 is true. 

Examples. The following are simple examples of the confidence con 

cept of statistical evidence. They may be thought of in the context of the 

investigation of genetic linkage described above. The interpretations of 

statistical evidence are expressed in the first person because they illus 

trate in simple cases the writer's own practice and thinking concerning 
statistical evidence, based in part on some experience as an independent 

interpreter of genetic data and developer of some new methods in 

Mendelian theory and data analysis (Birnbaum, 1972), as well as on 

extensive observation and analysis of general statistical practice and 

thinking. In my view these examples, and their interpretations in follow 

ing sections, are typical of widespread statistical thought and practice, 
with the qualification that they are given here with a degree and style of 

explicit expression which is unusual. The interested reader will of course 

make an independent judgment about this. 

The first person form is somewhat analogous to the usage of Savage 

(1954) whose Bayesian decision theory is developed from the standpoint 
of a generic rational person 'you'. In a following section these examples 
will be referred to in the course of a critical discussion of some assump 
tions of Savage's and Wald's decision theories. 

Symbols of the form dx and d2 introduced above are used to present 
the examples. 

(1) I interpret 

(reject Hx for H2, 0.06, 0.08) 

as strong statistical evidence for H2 as against Hi. Similarly I interpret 

(reject H2 for Hi 0.06, 0.08) 
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as strong statistical evidence for Hx as against H2. 

(2) I interpret 

(reject Hx for H2, 0, 0.2) 

as conclusive evidence for H2 as against Hx. Here the zero value of the 

error probability of the first kind indicates that the observational results 

are incompatible with Hx. 

(3) I interpret 

(reject Hx for H2, 0.01, 0.2) 

as very strong statistical evidence for H2 as against Hx. 

(4) I interpret 

(reject H2 for Hx, 0, 0.2) 

as weak statistical evidence for Hx as against H2. Here the relatively large 
value 0.2 of the error probability of the second kind suggests relative 

skepticism concerning this evidence against H2. 

(5) I interpret 

(reject Hx for H2, 0.5, 0.5) 

as worthless statistical evidence. It is no more relevant to the statistical 

hypotheses considered than is the toss of a fair coin, since the error 

probabilities (0.5, 0.5) also represent a model of a toss of a fair coin, with 

one side labeled 'reject Hx and the other 'reject H2. If such a case arose 

in practice, our comments would lead us to judge the experiment, or at 

least the test adopted, to be worthless. 

The distinction between the two interpretations of 'decision' may be 

epitomized (as Bernard Norton has pointed out) by contrasting the 

ordinary usages:3 
behavioral: 

'decide to' act in a certain way, 
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and 

evidential: 

'decide that' a certain hypothesis is true or is 
- 

supported by strong evidence. 

Concerning the different (pragmatist) identification of 'decide that A is 

true or well supported' with 'decide to act as if A is true or well 

supported', it will be clear from discussion above and below that we reject 

any such simple identification, and regard conclusions and statistical 

evidence as having autonomous status and value. 

The preceding considerations were emphasized clearly though less 

formally by Cox (1958, p. 354) as follows: 

it might be argued that in making an inference we are 'deciding' to make a statement of a 

certain type about the populations and that, therefore, provided the word decision is not 

interpreted too narrowly, the study of statistical decisions embraces that of inferences. The 

point here is that one of the main general problems of statistical inference consists in 

deciding what types of statement can usefully be made and exactly what they mean. In 

statistical decision theory, on the other hand, the possible decisions are considered as 

already specified. 

Further analysis of the distinctions between the two interpretations of 

the 'decisions' of decision theory is provided in those sections below 

which treat certain assumptions underlying Savage's and Wald's decision 

theories. In particular, it is shown that if one wishes to regard evidential 

statements represented, for example, by 

df: (reject Hx for H2, 0.05, 0.05) 

as 'decisions' in a formal model of a decision problem, then certain basic 

assumptions of statistical decision theories are incompatible with certain 

basic properties and meanings of those evidential statements. 

4. STATISTICAL EVIDENCE AS ONE AMONG SEVERAL 

CONSIDERATIONS REGARDING SUPPORT OF 

SCIENTIFIC CONCLUSIONS 

As Tukey (1960) has emphasized, a conclusion reached in a scientific 

investigation, such as the conclusion of our geneticist that two loci are 

linked, requires not only 

(a) statistical evidence of sufficient strength concerning the statistical 

hypotheses of interest. 
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In addition the investigator (or community of investigators) must judge 

(b) the adequacy of the mathematical-statistical model, which serves 

as the conceptual frame of reference for the interpretation of the 

statistical evidence, to represent the research situation in relevant 

respects; and 

(c) the compatibility with other knowledge and evidence of a conclu 

sion that may be supported by statistical evidence provided by the 

current investigation (for example, strong statistical evidence 

against the statistical hypotheses representing no linkage).4 

These important considerations prevent us from regarding a scientific 

conclusion as being determined in any simple or exclusive way by the 

statistical evidence which may support it. 

The Neyman-Pearson theory introduced a kind of formal symmetry 
into the formulation of problems of testing statistical hypotheses, by 

requiring explicit specification of alternative statistical hypotheses and 

error probabilities of the second kind (e.g. H2 and ? in our schema) to 

complement the traditional specification (e.g. just Hx and a in our 

schema). 
But in many early and modern applications of statistical tests, there is a 

definite lack of symmetry in the status of the alternative statistical 

hypotheses considered, related to a lack of symmetry in the status or 

significance of corresponding scientific hypotheses or possible conclu 

sions. For example in many cases one scientific hypothesis is regarded as 

established on the basis of current knowledge, or at least as acceptable 
or plausible, unless and until sufficiently clear and strong evidence against 
it appears. Clearly such considerations lie outside the scope of mathemat 

ical statistical models and statistical evidence in the sense discussed 

above, but rather in the scope of the scientific background knowledge and 

judgment referred to in (b) and (c) above. 

In traditional formulations of testing problems which preceded the 

Neyman-Pearson theory and which continue to appear prominently in 

applied and theoretical statistics, in various applications it may be more 

or less plausible to suppose that there is implicit, though not explicit, 
reference to alternative statistical hypotheses and corresponding error 

probabilities, as an implicit part of the basis for choice and reasonable 

interpretation of a test statistic; and possibly to suppose also that there is 
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implicit if not explicit reference to possible alternative scientific hypoth 
eses or possible conclusions corresponding to such implicit statistical 

hypotheses. The scope of the present paper does not extend to tests in 

such traditional formulations except to the extent that they may be 

regarded in an application as being interpreted at least in principle with 

plausible implicit, if not explicit, reference to some alternative statisti 

cal hypotheses. Such terms as 'standard statistical methods' and 

'standard methods of testing statistical hypotheses', as used throughout 
this paper, must be understood with this important qualification to avoid 

confusion. 

5. THE THEORETICAL AMBIGUITY OF THE 

NEYMAN-PEARSON THEORY 

The Neyman-Pearson theory is interpretable in its mathematical form as 

a special restricted part of general statistical decision theory, as we have 

indicated above and will elaborate further below. As to the extra 

mathematical interpretations and theory, which relate that mathematical 

form to applications, one may say that there are two Neyman-Pearson 
theories: 

One is based on behavioral interpretations of the decision concept, and 

has been elaborated by Neyman in terms of his concept of inductive 

behavior as mentioned above. It is difficult or (in the view of the present 
writer and some others) impossible to discover or devise clear plausible 

examples of this interpretation in typical scientific research situations 

where standard methods are applied. (The interested reader will make an 

independent judgement about this, and may wish to consider the exten 

sive and important contributions of Neyman himself to the interpretation 
of scientific data in several research areas.) 

The second theory which makes use of the mathematical structure of 

the Neyman-Pearson theory is based on evidential interpretations of the 

'decisions' in that theory, and has as its central concept what we have 

called the confidence concept of statistical evidence - a concept whose 

essential role is recognizable throughout typical research applications 
and interpretations of standard methods, but a concept which has not 

been elaborated in any systematic theory of statistical inference. 
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Since even the existence of this important distinction between two 

theoretical interpretations of the mathematical structure of the Neyman 
Pearson theory is not very widely nor clearly appreciated, much of the 

obscurity and misunderstanding found in the statistical literature is not 

surprising. A simple step toward limiting this confusion and obscurity 
would be to make consistent use of terms which keep the distinction in 

view whenever necessary, such as 'confidence concept' and 'evidential' or 

'behavioral' interpretation; and to avoid unqualified use, when ambiguity 
and confusion could result, of such standard terms as: the Neyman 
Pearson theory (or approach, or school); and 'frequentist', 'objectivist', 

'orthodox', 'classical', 'standard', and the like. 

In the many applications where each interpretation seems to have some 

role, a sharp theoretical distinction between the two interpretations may 
have particular value in helping to clarify the purpose or purposes of the 

application and guide the adoption of appropriate methods. For example, 
new knowledge about a genetic linkage may have immediate value as a 

basis for the genetic counseling of a particular family. Here one can in 

principle consider two models of decision problems as having some scope 
in the same situation, one having 'decisions' interpreted in the literal 

behavioral sense (for example 'do not have another child' or 'do'); and the 

other model having 'decisions' with evidential interpretations (for exam 

ple concerning statistical hypotheses related to possible scientific conclu 

sions about genetic linkage). 
Even if various details of the two models should correspond (for 

example the two decision functions adopted might, though they need not, 
be identical in form though different in kind of interpretation), the 

purposes and problems considered would be distinct, and hence properly 
characterized and treated by distinct theoretical concepts. 

In other applications where there is a problem of decisions in the 

behavioral sense, one may seek conclusions (or strong statistical evi 

dence) as a basis for making decisions judiciously. In such cases, if some 

formal model of a decision problem is considered to be an accurate model 

of the real situation in the relevant respects, one may argue that to 

consider conclusions (or statistical evidence) as such is at best superflu 

ous, and at worst may distract from clear appreciation of the actual 

decision problem and accurate model. On the other hand, if it is not clear 

that any formal model of the decision problem has sufficient realism to be 
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applied, then development of new knowledge (conclusions or statistical 

evidence) may naturally be sought as a basis for making decisions.5 

The second example of the 1936 paper of Neyman and Pearson 

involves explicit consideration of both conclusions and related decisions, 
but is discussed so briefly and incompletely that I am unable to interpret it 

from the standpoint of the preceding paragraphs. No other examples of 

applications were discussed in the joint papers. Thus the joint papers 
contain no discussion of an application in which a scientific conclusion 

was the sole or primary object of an investigation. Various writings of E. 

S. Pearson (notably 1937,1947,1962) discuss applications in which both 

conclusions and decisions (in the behavioral sense) are of interest, with 

conclusions sought as a basis for making decisions. 

6. THE CONCEPTS OF TESTS AND DECISIONS IN THE 1933 PAPER 

OF NEYMAN AND PEARSON 

The 1933 paper of Neyman and Pearson begins (pp. 141-2) with explicit 
concern about the meanings of concepts and methods of testing. 

The authors discuss "What is the precise meaning of the words 'an 

efficient test of a hypothesis?' There may be several meanings." 
No concept of an 'efficient test' had appeared in the preceding litera 

ture of testing, but the term 'efficient' had been introduced into 

mathematical statistics by Fisher in connection with his theory of estima 

tion in the early 1920's. 

Fisher's theory, with its striking mathematical power and conceptual 

depths and obscurities, stood in the background of the efforts of Neyman 
and Pearson to initiate a comparably systematic theory of tests, as they 
indicated in the introduction to their exploratory paper of 1928. Their 

plan to treat testing problems in an exact form (rather than by asymptotic 

approximations for the case of large samples, as Fisher had done) would 

eliminate some purely technical complications and thereby facilitate 

clarity concerning concepts such as 'efficient' or its analogues in a theory 
of tests. 

On the side of applications, there was as much need for a systematic 

theory of tests as there had been for a more systematic theory of 

estimation, to guide investigators in choosing among alternative possible 
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tests in problems of increasing complexity, where the common sense 

which had guided traditional testing practice faltered. (Neyman and 

Pearson began their 1930 paper with discussion of Romanovsky's 1928 

paper which had given new distribution theory for several statistics for a 

standard testing problem, pointing out the open basic problem of "deter 

mining which is the most appropriate one to use in any given case.") 
The 1933 paper supplied a definition of 'an efficient test' which is clear 

on the mathematical side, and is neutral in relation to the contrasting 
behavioral and evidential interpretations of 'decision' discussed above. 

An efficient test is defined as one in which the error probabilities (such 
as a and ? in our schema) are minimized (jointly in some appropriate 
sense). Whether evidential or behavioral interpretations of 'decisions' are 

in view, such minimization of error probabilities would seem to be a 

clearly appropriate goal. No concept of an 'efficient test' has, even now, 
been proposed in terms of the earlier tradition of formulating testing 

problems (without reference to error probabilities under alternative 

hypotheses). In this sense one may say that it appears to have been 

'necessary' to make some change in the traditional mathematical formu 

lation of testing problems, as a basis for introducing a concept of an 

'efficient test' which might guide applications and theoretical develop 
ments. 

In any case, Neyman and Pearson met a problem of broad theoretical 

and practical scope by changing some of the terms of the problem, as 

original investigators have frequently done in all problem areas.6 

Although some change in the mathematical formulation of testing 

problems seems to have been necessary, in the sense just indicated, the 

theoretical innovation of the Neyman-Pearson theory, the behavioral 

interpretation of tests, was not necessary in the following sense: An 

evidential interpretation has been associated with typical applications of 

tests in scientific research investigations in all periods of their use (which 
dates from 1710), without apparent discontinuity during the years follow 

ing 1933 when the mathematical structure of the Neyman-Pearson 

theory became widely accepted as the new or improved mathematical 

basis for the theory of tests. 

This observation suggests the questions: 'What roles or functions was 

the behavioral interpretation intended to serve?' and 'What functions has 
it served?' The joint papers suggest less than clear answers, while later 
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papers written by Neyman and Pearson separately suggest clearer 

answers which are different for the respective authors. 

Although the 1933 paper begins, as we have noted, with concern about 

the meanings of concepts of testing, it discusses only a mathematical 

aspect of the meaning of an 'efficient test' ; and the meaning of 'a test' (or a 

'decision' such as 'reject Hi) is not discussed systematically with regard 
to extra-mathematical interpretations. Brief but clear and contrasting 

behavioral and evidential interpretations appear: 

Behavioral: "Such a rule tells us nothing as to whether in a particular case H is true 

when"... "accepted" ... "or false when"... "rejected." 
... "But... if we behave 

according to such a rule, then in the long run we shall reject H when it is true not more, 

say, than once in a hundred times, and in addition we may have" analogous assurance 

concerning the frequency of rejections of H when it is false." (p. 142.) 
Evidential: 1. In the "method of attack ... in common use ... If F were very small, this 

would generally be considered as an indication that the hypothesis, H, was probably 

false, and vice versa." (p. 141.) 
2. "Let us now for a moment consider the form in which judgements are made in 

practical experience. We may accept or we may reject a hypothesis with varying 

degrees of confidence; or we may decide to remain in doubt. But whatever conclusion is 

reached the following position must be recognized. If we reject H0, we may reject it 

when it is true; if we accept H0, we may be accepting it when it is false, that is to say, 
when really some alternative Ht is true." (p. 146.) 

The authors' attitude toward evidential interpretations is not made 

quite clear. The preceding quotation from p. 142 gives approvingly the 

behavioral interpretation of a test in the new mathematical formulation, 
as against the traditional "method of attack ... in common use" (tradi 
tional mathematical formulation, with evidential interpretation). But the 

quotation from p. 146 (in a discussion not linked by the authors with that 

of pp. 141-2) describes approvingly the evidential interpretation of a test 

in the new mathematical formulation. 

An interpretation which would reconcile this apparent discrepancy is 

to regard the behavioral interpretation as not intended to apply in a 

situation of scientific research in any direct, literal, or concrete sense 

which would be incompatible with an evidential interpretation of the 

'decisions' in question; but rather intended to apply in such a situation in a 

way which is heuristic or hypothetical, serving to explain the inevitably 
abstract theoretical meanings associated with the error probabilities, 
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formal 'decisions' such as 'reject Hx, and evidential interpretations based 

on a formal model of a decision problem (test). Thus hypothetical 
behavioral interpretations may be regarded as playing a role in the inner 

theoretical core of the confidence concept.7 
This interpretation of the relation between behavioral and evidential 

interpretations seems close to that expressed by E. S. Pearson in various 

writings (in particular 1937, 1947, 1955, 1962). Professor Pearson has 

kindly permitted the following quotations from unpublished notes which 

he wrote in April 1974, as comments on an earlier draft of the present 

paper. (The terms 'behavioral' and 'evidential' do not appear in the 

original notes; in their places there appear the respective terms 'literal' 

and 'elliptical', which were used in the earlier version of the present 

paper.) 

[In the 1920's and 1930's]... my outlook as a practising statistician would have been what 

you term evidential. But to build such a structure one had to set out a mathematical theory 
which led to rules which, on the face of things, suggested a behavioral interpetation. ... I 

think you will pick up here and there in my own papers signs of evidentiality, and you can say 
now that we or I should have stated clearly the difference between the behavioral and 

evidential interpretations. Certainly we have suffered since in the way the people have 

concentrated (to an absurd extent often) on behavioral interpretations ... 

It must happen frequently that a reader interested in an application where 

an evidential interpretation is appropriate, when he encounters a 

behavioral interpretation of a statistical method such as appears in many 

expository and theoretical works, supplies his own evidential re interpre 
tation of the given behavioral interpretation if the writer has not supplied 
one, in order to relate the method cogently to his intended application 
and interpretation. 

The 1920's and 1930's were a period of much critical concern with the 

meanings and possible meaningless of terms and concepts in the 

philosophy of science, psychology, and various other disciplines as well as 

in statistics. These concerns were usually pursued in terms of such 

doctrines as behaviorism, operationalism, or verificationism. 

Various writers applied these criteria with varying degrees of strin 

gency, greater stringency entailing smaller scope and importance for the 

theoretical and hypothetical concepts. 

Perhaps the widest and most lasting influences of these doctrines have 

been heightened appreciation qf both the values and the limitations of 
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such criteria for the analysis and development of a discipline, along with a 

balancing appreciation of the essential roles of theoretical, hypothetical, 
and perhaps even metaphysical concepts. 

7. THE STATUS OF THE CONFIDENCE CONCEPT 

IN THEORY AND APPLICATIONS 

As mentioned above, there is no precise mathematical and theoretical 

system which guides closely the wide use of the confidence concept in 

standard practice. (It is not clear that further developments can alter this 

situation. Cf. Birnbaum, 1969.) Rival theoretical approaches to the 

interpretation of research data (notably the likelihood and Bayesian 

approaches) offer attractive features of systematic precision and general 

ity; but their basic concepts fail to satisfy those who prefer the confidence 

concept for the kind of theoretical objective control it provides over the 

error probabilities of interest (appearing in sch?mas like that above).8 
The ad hoc aspects of the confidence concept are encountered in all 

applications, including that of testing genetic linkage discussed above. 

These aspects are related to its mathematical basis in the Neyman 
Pearson theory as follows. 

In a given problem of two simple hypotheses, the problem of 

minimization of error probabilities a and ? (solved by Neyman and 

Pearson in 1933) leads not to a unique best test or decision function but to 

a family of best tests, each of which has the smallest possible value of ? 

among all tests with the same (or smaller) value of a, including for 

example the following points (a, ?) representing respective best tests: 

(0.01, 0.05), (0.02, 0.02), and (0.05, 0.01). 

For a given application such as our linkage investigation, nothing in the 

confidence concept nor the Neyman-Pearson theory leads to a particular 
choice among these, yet choices of this kind are always made, implicitly if 

not explicitly, whenever the confidence concept is applied. 
Another aspect of the ad hoc character of the confidence concept is its 

great potential flexibility in applications, which has not been very widely 

exploited. We may illustrate this in the preceding problem of two simple 

hypotheses, where three possible tests were considered. We may define a 

generalized kind of test of statistical hypotheses in terms of a formal 
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decision function taking three (rather than the usual two) possible values, 
as follows: 

The decision function takes the possible values: 

dx: strong evidence for H2 as against Hx 

d2: neutral or weak evidence 

d3: strong evidence for Hx as against H2. 

It takes the value dx on those sample points where the test characterized 

by (0.01, 0.05) would reject Hx; it takes the value d3 on those points 
where the test (0.05, 0.01) would accept Hi, and it takes the value d2 on 

the remaining sample points. Such a 'three-decision' test requires a 

scheme of a new form to represent its more numerous error probabilities, 
which are defined as follows: 

<xi = 
Vrob{di\Hx) 

? 
probability of a major error of Type I 

a2 = 
Prob(?/2|//1) 

= 
probability of a minor error of Type I 

?i 
= Yro\> {d3\H2) 
= 

probability of a major error of Type II 

02 = 
Prob(rf2|i/2) 

= 
probability of a minor error of Type II 

(It follows from the assumption that the original tests were best, that these 

error probabilities are minimized jointly in the usual sense. The ad hoc 

character of two-decision tests has not been eliminated, but reappears in 

such three-decision tests; and is illustrated once more by considering the 

possible alternative four-decision test which could be determined simi 

larly by using also the test characterized by (0.02,0.02) above. 

In contrast the likelihood approach, and the technically related 

Bayesian approaches, are formally elegant, allowing intuitively plausible 
direct interpretations of all possible numerical values of the likelihood 

ratio statistic as indicating strength of statistical evidence in this problem.) 
As other examples of methods for implementation of the confidence 

concept, outside the familiar categories of testing and of estimation by 
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confidence regions, we may mention nested confidence regions and 

related tests (e.g. Birnbaum, 1961 ; Dempster and Schatzoff, 1965; Stone, 

1969); and methods for 'generalized testing' among three or more 

alternative statistical hypotheses and for classification (e.g. Birnbaum and 

Maxwell, 1960). 

Among theoretical contributions specifically concerned with apparent 

difficulties or impossibilities in the way of giving a precise general 
theoretical treatment of the confidence concept and associated concepts, 

we may mention Barndorff-Nielsen (1971, 1973), Buehler (1959), 

Buehler and Fedderson (1963), Birnbaum (1969, 1970, 1972b), Cox 

(1971), and Durbin (1970). 
The confidence concept depends in principle upon an extra 

mathematical interpretation of the error probabilities which appear in 

sch?mas like that above, and this interpretation is usually described as a 

'frequentist' or 'objectivist' interpretation; and the same terms are often 

used to describe the whole approach based on the confidence concept. 

The two theoretical interpretations of the 'decision' concept discussed 

above have analogues in interpretations of probabilities. 
The term propensity interpretation has become widely used among 

philosophers in recent years to denote the kinds of 'objective' interpreta 
tion which seem appropriate and accurate for many theoretical terms in 

science, including probability. (See for example Mellor, 1971; Hacking, 

1965; Braithwaite, 1954.) The confidence concept seems to call for this 

kind of interpretation of error probabilities, rather than any more directly 

(literal, operationalist, behavioristic) frequency interpretation, as we 

have indicated in earlier discussion of the confidence concept. On this 

view, criticisms of frequency interpretations of probability, as against 

propensity interpretations, are not relevant to the confidence concept. 

(Presumably any rounded interpretation of probability in a scientific 

discipline would specify a role for concepts of statistical evidence, and 

perhaps also for the notion of 'practical certainty' associated with some 

applications, among the aspects of meaning associated with probability 
and related theoretical terms, such as 'genetic factor' in Mendelian 

genetics.) 
We shall not attempt to survey the current status of the confidence 

concept in theory and applications. This would be a formidable task, since 

it would call for an account of the largely implicit interpretations of 
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standard statistical methods in a great variety of scientific research 

disciplines, and in a large and growing statistical literature including 
theoretical and expository works. It is hoped that the present paper will 

prove helpful to the interested reader as he makes his own observations 

and judgements concerning the nature of standard theoretical and 

applied statistical work in various disciplines. 

8. OBJECTIONS TO A BASIC ASSUMPTION OF THE 

LINDLEY-SAVAGE ARGUMENT FOR BAYESIAN THEORY 

One of the important and influential theoretical arguments for Bayesian 

theory is the Lindley-Savage argument. We shall show here that this 

argument has no direct relevance nor persuasive force, as an argument for 

Bayesian methods as against typical standard statistical practice with 

scientific research data, by showing that an assumption of the argument 
holds only for 'decisions' under behavioral interpretations, but not under 

the evidential interpretations which constitute standard statistical prac 
tice. 

The argument is elementary, being formulated in terms of simple 

examples of tests (decision functions) like those above. The original 
somewhat informal accounts of the argument by Savage (1962, pp. 

173-5) and Lindley (1971, p. 13-14) should be read by the interested 

reader. They are complemented by a formalized version of the argument, 
with additional discussion, in an appendix below. 

The Lindley-Savage argument concerns judgements of preference or 

else indifference (equivalence) between alternative decision functions 

(tests) in problems of two simple hypotheses, with each decision function 

represented by a point P = 
(a, ?) in the unit square, determined by its 

error probabilities a and ?. 
Our discussion will be based on some simple examples of statistical 

evidence given above, which we continue to express in the first person 

usage. 

Examples. In some research situations I would strongly prefer to use a 

decision function (test) characterized by (0.05, 0.05) rather than one 

characterized by (0.1, 0). 
In such situations I particularly value the guarantee, which is provided 

by use of (0.05,0.05), that strong evidence will be obtained (either 
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supporting Hi against H2, or supporting H2 against Hx). The use of 

(0.1, 0) allows the possibility that merely weak evidence, represented by 

(reject Hx for H2, 0.1, 0), will be obtained. For example, the knowledge 
in the background of a linkage investigation may include strong (though 

not conclusive) statistical evidence for the locations of all but one of the 

genetic factors which control a certain system of immune reactions; and 

the current investigation may have as its object just to determine whether 

the remaining factor lies on chromosome No. 1 or No. 2. 

Let Hx now stand for the hypothesis of linkage with another factor 

known to lie on No. 1, and H2 the alternative hypothesis. In this situation 

I would avoid the risk of getting merely weak evidence by choosing 

(0.05,0.05) rather than (0.1,0); and would be able to complete the 

pattern of knowledge (chromosome map) of the system on a basis of 

consistently strong evidence. 

Similarly, in some situations (including the same linkage investigation), 
I would prefer (0.05, 0.05) to (0, 0.1), for similar reasons. 

In some situations (including the same linkage investigation) I would be 

indifferent as between (0.1, 0) and (0, 0.1), on grounds of their symmetry 
and of judgements of symmetry concerning the investigation in question. 

This pattern of preferences may be summarized by 

(0.05, 0.05)>(0.1, 0)^(0, 0.1), 

where > stands for 'is preferred to' and ~ stands for 'is equivalent to.' 

This pattern of preferences is incompatible with Assumption (II) of the 

Lindley-Savage argument as formulated in the appendix. (It is also 

incompatible with a basic premise underlying Wald's theory, as will be 

indicated in the next section.) This example suffices to illustrate that that 

assumption is not satisfied generally by the 'decision' concept associated 

with statistical tests as interpreted evidentially (not behaviorally) in 

typical research applications. 
A different but analogous example incompatible with Assumption (II) 

is the preference pattern 

(0.1, 0)~(0,0.1)>(0.05, 0.05). 

In some research situations I would have this preference pattern. In 

particular, if the knowledge in the background of a linkage investigation 
includes conclusive statistical evidence for the locations of all but one of 
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the factors which control certain immune reactions, then with certain 

scientific goals in view I would strongly prefer, rather than the guarantee 
of strong (but inconclusive) evidence provided by (0.05, 0.05), the uncer 

tain possibility of completing with conclusive evidence the pattern of 

knowledge in question which is provided by either (0.1, 0) or (0,0.1); and 

I would be indifferent as between them. 

Assumption (II) expresses in one important way the concept of ration 

ality (or consistency, or coherence) which is central to all statistical 

decision theories. Our criticism of this assumption and the concept it 

expresses may serve as a warning against oversimplified judgements of 

'irrationality' (or 'inconsistency', or 'incoherence'). 

9. COMMENTS ON A BASIC PREMISE OF WALDS 

DECISION THEORY 

'Mixtures' of decision functions play important technical and theoretical 

roles in the development of Wald's (1950) statistical decision theory. 
An example of a mixture is symbolized by 

M = 
?(0,0.1)+?(0.1,0). 

Here (0,0.1) and (0.1,0) represent as before two decision functions 

(tests), characterized by their respective pairs of error probabilities. The 

whole expression M stands for another decision function defined in terms 

of those two decision functions and an auxiliary randomization variable, 

say a toss of a fair coin, as follows: If the coin shows heads, the decision 

function (0,0.1) is applied to the observed sample point; otherwise 

(0.1,0) is applied. 
To determine the error probabilities which characterize the decision 

function M, we find readily 

(a,/8) 
= 

?(0,0.1)+?(0.1,0) 
= 

(0.05,0.05). 

(For example, under Hx the respective error probabilities are 0, if (0, 0.1) 
is applied; and 0.1, if (0.1, 0) is applied; and each will be applied with 

probability \.) 
The preceding discussion is based on a tacit assumption of a behavioral, 

and not a literal, interpretation of the decision functions considered. 
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One way of illustrating this is by reference to an example of the 

preceding section: 

Suppose my preference pattern includes 

(0, 0.1)~(0.1, 0)>(0.05, 0.05). 

Then it is plausible that I may be indifferent also as between (0, 0.1) and 

M, since the latter will provide me with an application of (0, 0.1) or else an 

application of (0.1,0) which I regard as equally satisfactory. But this 

implies that my preference pattern includes 

M>(0.05, 0.05), 

or, representing M now by its pair of error probabilities as determined 

above, 

(0.05, 0.05) > (0.05, 0.05) 

which is absurd. 

The fallacy in the preceding discussion is that the preference pattern 
first assumed above arose in an example of evidential interpretations of 

'decisions', while the calculation of the preceding paragraph was based on 

a behavioral interpretation. In particular, the preference for (0, 0.1) as 

against (0.05, 0.05) was based on a particularly high value ascribed to the 

possibility of statistical evidence symbolized by 

(reject Hx for H2, 0,0.1), 

in which the 'decision' ('reject Hx for H2) appears within the symbol for 

an evidential interpretation. 
On the other hand, in the calculation of the error probability 

a=?(0) + ?(0.1) 
= 0.05 

above, we considered just the 'decision' ('reject Hx for H2), without 

qualifications concerning the error probabilities which characterize the 

different respective decision functions (sch?mas) from which that 'deci 

sion' can result - that is, we tacitly interpreted that 'decision' behavior 

ally. 
The general point illustrated is that while behavioral interpretations of 

'decisions' may play a very valuable heuristic role in the mathematical 

development of the Neyman-Pearson and Wald theories, statistical 
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methods developed within those theories can and must be interpreted (or 

reinterpreted) with care when considered for possible use with evidential 

interpretations. 

APPENDIX. ON THE LINDLEY-SAVAGE ARGUMENT FOR 

BAYESIAN THEORY9 

The Lindley-Savage argument takes as its point of departure a recog 
nized problem encountered whenever the (non-Bayesian) theories of 

Neyman-Pearson and Wald are to be applied, the problem illustrated 

above as one source of the ad hoc character of the confidence concept: 
that of choosing among the various best tests (decision functions) (a, ?) 
available for a given application. The argument shows that if this problem 
of choice is treated 'rationally' (or 'consistently', or 'coherently') in a 

sense discussed above in Section 8, then 'you' are "a Bayesian, whether 

you thought you wanted to be or not.... Thus, the Bayesian position can 

be viewed as a natural completion, an overlooked step in the classical 

theory." (Savage, 1962, p. 175.) 
The last comments refer to the final step of the argument, which may be 

illustrated in prototype as follows: Suppose you judge as equivalent, for a 

given application, three decision functions characterized respectively by 

(0, 0.1), (0.05, 0.05), and (0.1, 0). 

Then ... "you" are "a Bayesian, whether you thought you wanted to be 

or not..." in the sense that your preference behavior, in this context, is 

indistinguishable from that of a Bayesian; for example, a Bayesian who 

ascribes prior probabilities gx and g2 respectively to Hx and H2, and losses 

Lx and L2 respectively to the errors of the first and second types, will also 

be indifferent as between those three decision functions, provided that 

gxLx 
= 

g2L2. Such 'indistinguishability' represents an aspect of the 

behaviorist point of view which is basic to Savage's Bayesian decision 

theory. But clear and important distinctions of viewpoints are evident 

here from the standpoint of a non-Bayesian who may have a decision 

problem in the behavioral sense but who may wish to reach a conclusion 

(in the sense discussed above) as a basis for making a decision, perhaps 
because he regards no complete model of a decision problem, including 
loss functions, as clearly accurate. Important distinctions are clear also 
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from the standpoint of an investigator who has no decision problem 

except in the sense of evidential interpretations under the confidence 

concept, and finds no place in his thinking for loss functions nor Bayesian 

probabilities of statistical hypotheses, even if he may be indifferent in a 

given research context between three tests represented by the three 

points above. 

The final step of the argument, just discussed in prototype, follows a 

more formalized argument whose conclusion is that 'you' have a prefer 
ence pattern among tests (decision functions) characterized by indiffer 

ence sets consisting of parallel line segments which cover the unit square 
of points (a, ?) (and thus coinciding with certain Bayesian preference 

patterns), including for example PP' and QQ' in Figure 1. We discuss the 

Fig. 1. 

assumptions of this argument before presenting the derivation itself. The 

assumptions and derivation are formulated in terms of the mathematical 

concept of equivalence classes among points of the unit square; the 

interpretation of interest is that a person's indifference between two tests 

(decision functions) may be represented by stating that the points charac 

terizing the tests are equivalent. 
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ASSUMPTION (I). There exist two distinct points P and P' which are 

equivalent. 

Possible examples of (I) are P and P' in the figure; and the points (0, 0.1) 
and (0.1,0) considered in examples above. This assumption seems free 

from possible plausible objections, for the following reason. The point 

(0,0) is preferred to the point (0,0.1), and the latter is preferred to 

(0.1, 0.1), on the basis of the non-controversial principle of inadmissibil 

ity (regardless of possible evidential or behavioral interpretations which 

may be of interest). Consider the respective points (a, a) of the line 

segment from (0, 0) to (0.1, 0.1), and suppose that you judge that no such 

point is equivalent to (0,0.1). 
Then as a increases continuously from 0, your preferences show an 

implausible discontinuity at some value of a, jumping from 'prefer (a, a) 
to (0,0.1)' to 'prefer (0,0.1) to (a, a)' without anywhere assuming the 

intermediate value 'indifferent between (a, a) and (0,0.1)'. 
Our comments on the second assumption are stated conveniently with 

reference to a simpler restricted case: 

ASSUMPTION (II*). If P and P' are equivalent, then P and P" are also 

equivalent, where P" = kP + (1 
- 

k)P' and k is any number between 0 and 

1. 

For example if k = 
\, P = 

(0, 0.1), and P' = 
(0.1, 0), then P" = 

(0.05, 0.05), 

representing the example of a mixture discussed in Section 9 above, 
where we found the equivalence of (0.05,0.05) with (0,0.1) to be 

plausible under a behavioral interpretation of 'decisions' but not in 

general under an evidential interpretation. In particular we rejected that 

equivalence in the context of the examples of Section 8. 

Assumption (II*) is the special case of the following assumption in 

which R=P = Q. 

ASSUMPTION (II). If P and P' are equivalent, then Q and Q' are also 

equivalent, where Q = kP + (1 
- 

k)R, Q' = kP' + (1 
- 

k)R, R may be any 

point, and k may be any number in the unit interval. 

LINDLEY-SAVAGE LEMMA. Assumptions (I) and (II) imply that 
the unit square is partitioned into equivalence sets, each consisting of a 

line segment parallel to PP. 
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Proof: 

(1) By (I) there exist two distinct equivalent points P and P'. 

(2) Let R be any point on the perimeter of the unit square. Let k be 

any number satisfying 0 < k < 1, and let Q = 
kP+(1 

- 
k)R, and let 

Q' = kP' + (1 
- 

k)R. (See Figure 1.) The case of R collinear with P 

and P' is mentioned below.) By (II), Q and Q' are equivalent, since 

P and P' are equivalent. 

(3) The line segment QQ' is parallel with the segment PP', since the 

triangles RQQ' and RPP' are similar and have the common vertex 

R. 

(4) Let c be any number satisfying 0<c<l, and let P" 

cP+{l-c)P'. P and P" are equivalent, by (II). 

(The special case (II*) of (II) applies here.) 

(5) Since c is arbitrary, it follows that all points of the line segment PP' 

are equivalent. Similarly all points of the segment QQ' are 

equivalent. 

(6) Since k is arbitrary, it follows that the triangle RPP' is covered by a 

family of line segments each parallel to PP', each of which is an 

equivalence class. 

(7) As R sweeps out the circumference of the unit square, the square is 

covered by such triangles; and each triangle is again covered by 

segments parallel to PP', each segment consisting of equivalent 

points. (The case of R collinear with PP' is seen at this point not to 

be special.) 

(8) The union of all such segments collinear with QQ' is a single 

segment between perimeter points of the square; since equivalence 
is transitive, this interval is an equivalence set. Similarly for other 

segments mentioned. Thus the unit square is partitioned into 

equivalence sets, each consisting of a line segment parallel to PP'. 

This completes the proof of the Lemma.f 

University College, London 

t Editors' Note. The proofs of the present paper were ready only after the death of 

Professor Allan Birnbaum. The proofs were kindly checked by the staff of The City 

University, London and the University College, London. It was found that the bibliography 
was incomplete, and even though several corrections and additions were made, there still 

remain gaps in the bibliographical data. 
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NOTES 

* 
The writer is grateful for helpful discussions of earlier versions of parts of this material 

with many colleagues, particularly D. V. Lindley, E. S. Pearson, J. Pratt, C. A. B. Smith, A. 

P. Dawid, G. Robinson, B. Norton, and M. Stone. 
1 

The term 'rule of behavior' made its appearance, linked with the term 'decide', in the 

1933 paper, in the discussion introducing the formulation of the problem of testing 
statistical hypotheses (p. 291, original; p. 142, reprint). Subsequently the concept of 

'inductive behavior' was elaborated and supported, in opposition to various other concepts 
of statistical inference (inductive reasoning'), by Neyman (1947, 1957, 1962, 1971). 
2 

Among geneticists who are also prominent theoretical statisticians, the decision concept 

(at least in its behavioral interpretation) has been rejected as inappropriate in scientific data 

analysis, from different standpoints in statistical theory, by: 
1. O. Kempthorne, from the standpoint of standard methods interpreted in a non 

behavioral way similar to that discussed below (for example, 1971, pp. 471-3, 489); 
2. C. A. B. Smith, who has developed a version of Bayesian theory, and has led in the use of 

Bayesian methods in scientific publications in genetics (1959, p. 297); 
3. A. W. F. Edwards, an exponent of the likelihood approach, who has applied that 

approach in his scientific publications in genetics (1972); and 

4. R. A. Fisher (for example, 1956, pp. 100-103). 
The case of two simple hypotheses is unrealistic for problems of testing linkage, where a 

composite statistical hypothesis is generally adopted to represent the scientific hypothesis of 

linkage. However the simplified model of two simple hypotheses entails no sacrifice of 

realism with respect to the questions of interpretation considered in this paper. On the 

contrary, typical formulations of linkage tests in practice often make use of simple 

hypothesis, for technical reasons, to represent effectively a more realistic composite 

hypothesis (Morton, 1955; Smith, 1953, pp. 180-183). 

Analogous comments apply to the limited realism of our discussion of the example of the 

lamp manufacturer: It turns out that the realistic composite hypothesis representing good 
lot quality (at most 4% defective) is, for technical reasons, represented effectively by the 

simple hypothesis (exactly 4% defective), in the sense that the value a characterizing any 

('admissible') decision function for the simplified problem is also an upper bound of error 

probabilities over the realistic composite hypothesis. Similar comments apply to the 

alternative hypothesis. 3 
The essential point epitomized here is that there is a distinction of levels of language, the 

first phrase occurring in the 'object language' of things and behavioral acts, the second in the 

'metalanguage' in which we discuss a certain statement (hypothesis). Apparent exceptions 
to the epitomization require explanation in the preceding terms. For example, in a scientific 

research context 'to decide that a certain hypothesis is supported by strong evidence' is 

tantamount to 'to decide to make the statement that the hypothesis is supported by strong 
evidence.' 

The apparently exceptional occurrence here of 'decide to' with an evidential reference is 

explained by pointing out that 'to make a statement' occurs here in the metalanguage (where 
all evidential considerations are expressed), and so is not a case of 'to act' when that phrase 
occurs in the object language, where it has behavioral interpretations. 4 

Examples of joint consideration of these aspects of simple genetics research problems will 

be found, for example, in Smith (1968) and Mendel (1866). The present writer will offer an 

extended discussion of such considerations in another paper, 'Mendelian genetics: a case 

study in the structure of science.' 
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5 
Even in applications where a behavioral interpretation of 'decisions' clearly applies, the 

scope of applications of complete formal models of decision problems has had a slow and 

limited development (see, for example, Brown, 1970); possibly due in part to considerations 

discussed above. 
6 

In the traditional formulation of testing problems the counterpart of the error probability 
a was the 'probability level' statistic P = 

P(x). The theoretical aspect of the traditional 

formulation is a concept of statistical evidence associated with that statistic, under which 

P(x) is interpreted as an index of strength of evidence against the hypothesis Hx, with 

smaller values of P{x) indicating stronger evidence. Thus the traditional interpretation is 

evidential and not behavioral (in any direct sense), and the behavioral interpretation was an 

innovation of the Neyman-Pearson theory. 
In many applications the statistic P(x) was (and is) interpreted schematically, in terms of a 

dichotomy such as: the statistical evidence against H1 is strong if and only if F(jc)^0.05. 

Here 0.05 corresponds to the error probability a in our schema; and the schematized form 

of the traditional formulation can be represented by a formal decision function which takes 

the value 'reject H{ if and only if the observed sample point x gives P(x)^0.05. 
7 

This is not to deny that there is any behavioral (literal) realization of certain relative 

frequencies of errors, approximating the error probabilities in the schema representing a 

test, in certain long series (actual or conceivable) of applications of tests of the same form. 

What is suggested is that such a behavioral interpretation is related in a somewhat abstract, 

indirect (hypothetical or theoretical) way to the evidential interpretation of a single 

application of a test in a given research situation. This theoretical relation of the evidential 

meaning of a 'decision' in such an application, to a certain behavioral interpretation of the 

same formal 'decision' in another context (a series of applications), does not reduce or 

eliminate evidential interpretations in favor of behavioral ones. On the contrary, apprecia 
tion of such a behavioral interpretation, coupled with appreciation of the hypothetical 
theoretical relation it bears to an evidential interpretation in the given research situation, 

may be regarded as an important part of appreciation of the meaning of statistical evidence 

as interpreted under the confidence concept. 
8 

The likelihood approach (Edwards, 1972) is based on a primitive concept of statistical 

evidence which appears closely analogous to our formulation (Conf) of the confidence 

concept, but which nevertheless does not satisfy the latter nor provide the kind of theoretical 

control of error probabilities mentioned above. It was rejected by Neyman and Pearson in 

favor of the confidence concept in their 1933 paper, after they had used it as the basis of their 

exploratory 1928 paper. A detailed discussion of incompatibilities between the two 

concepts is given in Birnbaum (1969). 

The likelihood concept may be formulated thus: 

{L')\ If an observed sample point has very small probability (density) under Hu relative 

to its probability (density) under H2, then it provides strong statistical evidence for 

H2 as against H\. 

The likelihood and confidence concepts were taken up successively by Neyman and 

Pearson as plausible successors to the simpler primitive concept of statistical evidence which 

has been associated (usually implicitly) with tests in their traditional formulation, which has 

been represented in applications since 1710. Both (Conf) and (L') may be considered as 

assimilating, in analogous ways, that traditional concept, which may be formulated thus: 

(P): A concept of statistical evidence is not plausible unless it finds 'strong evidence 

against Hi with very small probability when Hi is true. 
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In traditional practice this concept had been complemented by unformalized judgement 
exercized in the devising and selection of test statistics, which were then interpreted as 

indices of strength of statistical evidence against a hypothesis Hx, without explicit reference 

to alternative hypotheses. 
Each of the concepts of evidence mentioned may be regarded as a refined version of that 

simpler familiar intuitive concept which moves us, when something observed seems 

'improbable' or 'unlikely' (in any sense, often not specified explicitly), toward reconsidera 

tion of some hypothesis, perhaps only tacitly held. 
9 

The reader is urged to compare this discussion with the original versions of the argument 

by Savage and Lindley cited in Section 8. 
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