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Some Properties of Limits

This note summarizes some properties of several limit procedures that have come under
consideration for use in LHC searches. It is not in its current form intended to represent
a consensus view, but rather only provide a basis for discussion. For now only frequentist
limits are described. Bayesian limits (and their frequentist properties) will be considered at
a future point.

1 Introduction and prototype analysis

As a useful prototype analysis, we consider a measured quantity x is modeled as following
a Gaussian distribution with mean µ and standard deviation σ. Taking parameter µ = 0
corresponds to the null or “no-signal” or “background-only” model. Often we consider signal
models where µ cannot be negative.

Rejecting the background-only model is the key step towards claiming discovery of new
physics. In addition to testing the µ = 0 hypothesis, one may also want to test nonzero µ and
see which values can be rejected. The largest (smallest) values not reject may be reported as
upper (lower) limits on the parameter.

To carry out the procedure outlined above, one defines for each value of µ a statistical
test. This can be done by taking a fixed significance level α and finding the corresponding
critical region. If the data fall in the critical region, the parameter value is rejected. Those
parameter values not rejected form a confidence interval with confidence level 1 − α.

Equivalently one may for every hypothesized parameter value specify a rule by which the
data outcomes are ordered in terms of their level of compatibility with the hypothesis. The p-
value of the hypothesized parameter is the probability, under assumption of that hypothesis,
to find an outcome in the region of equal or lesser compatibility relative to what was observed
in the real data. If the p-value of a hypothesized parameter value µ is found below α, then
this corresponds to finding the data in the critical region and µ is rejected. Thus the edges
of the confidence interval are those values of the parameter for which the p-value is just at
the threshold α.

2 Limits for different kinds of analyses

The test chosen as the basis for the confidence interval will depend in general on the nature
of the analysis. We could consider, e.g., the following scenarios:

1. The signal is not yet established and physically restricted to µ > 0. (Here “established”
could be taken in a loose sense meaning “broadly recognized as a real process” or could
correspond to a specific numerical criterion such as a 5σ discovery threshold.)

2. The signal is not yet established and there is no restriction on the sign of µ.
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3. The signal is well established. That is, values of µ both above and below some range
have been excluded, and in particular µ = 0 has been rejected in convincing enough
fashion that there is a general consensus that the signal exists.

4. The signal is not well established and the signal model is characterized by more than one
parameter of interest, e.g., a strength parameter µ and a particle mass mH , or the case
of neutrino oscillations with a mass difference squared ∆m2 and a mixing parameter
sin2 2θ.

3 Criteria to consider when constructing limits

When constructing a limit, one may wish to consider the follow criteria:

1. Coverage. The probability for the confidence interval to include the true parameter
value should be greater than or equal to the confidence level 1 − α.

2. Power. One may wish to construct the test of each parameter value so as to maximize
the probability to reject it under assumption of some stated alternative.

3. Choice of alternative for test. For example, when testing a value µ0 one may be regard
the alternative to be µ 6= µ0, or one might have a one-sided alternative, e.g., µ < µ0.

4. Conditional coverage. One may wish to construct the interval so that it does not contain
identifiable data outcomes such that the maximum coverage probability over all values
of µ and conditional on the data outcome is less than the stated confidence level (which
would indicate the presence of negatively biased relevant subsets [4]).

5. Adapted conditional coverage. One may wish to require that the maximum conditional
coverage not be below the confidence level for a specified subset of parameter values.

6. Bayesian correspondence. One may wish to require that the resulting confidence interval
matches, at least approximately, the interval that would result from a Bayesian analysis
for some prior.

7. Flip-flopping. One would like the procedure to be such that there is no violation of the
stated coverage properties as a result of a choosing what result is reported depending
on the data outcome.

4 Properties of limits

Limits from the PCL [1], CLs [2] and Feldman-Cousins [3] methods are shown in Fig. 1(a),
and the corresponding coverage probabilities are shown in Fig. 1(b). The properties of these
limits are discussed below.

4.1 Properties of CLs

The CLs upper limit for the Gaussian problem is shown in Fig. 1(a). The coverage of CLs is
everywhere greater than then nominal confidence level, as can be seen in Fig. 1(b).

The CLs procedure corresponds to a one-sided upper limit. That is, both the numerator,
CLs+b, and denominator, CLb are based on (different) one-sided tests.
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Figure 1: Plots of (a) several types of limits and (b) their coverage as a function of µ.

For the Gaussian problem, CLs coincides with the Bayesian limit obtained with a constant
prior for µ ≥ 0.

Flip-flopping is potentially an issue, but could be handled by always quoting an upper
limit. “Always” in this context could be taken to mean in all analyses that are carried
out in the search phase of the phenomenon, i.e., before the existence of the process is well
established.

4.2 Properties of PCL

The Power-Constrained Limits are shown in Fig. 1(a) for the Gaussian problem.

The unconstrained confidence interval is first constructed using a likelihood ratio with
respect to a one-sided alternative. Values of µ rejected by the test may then be re-included
in the interval if the power of the test with respect to the µ = 0 alternative is below the
power threshold Mmin.

The choice of Mmin is a matter of convention. Formally it should be large compared
to α, and initially the value Mmin = Φ(−1) = 0.16 was proposed. This choice could be
revisited. The PCL interval for Mmin = 0.50 is also shown in Fig. 1. This choice would
have the advantage that one would see fewer instances where the PCL and CLs limits differ
numerically by large amounts, reducing the amount of “surprise” in the community. The
ability to state easily in what regions PCL has 95% and 100% coverage is retained.

The coverage of PCL intervals is 100% for µ less than some value µmin. This corresponds
to the value for which the power is just equal to Mmin. For µ > µmin the coverage is
1 − α = 95%.

Because of the nature of the initial likelihood-ratio test, the point µ = 0 is never excluded.
Therefore, formally, even the unconstrained interval does not have negatively biased relevant
subsets.

After application of the power constraint, the region of µ values with 95% coverage, i.e.,
µ > µmin has negatively biased subsets, if this concept is adapted to allow conditioning on
the true value µ.
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The PCL interval does not naturally map onto a Bayesian interval.

Flip-flopping is potentially an issue, but could be handled by always quoting an upper
limit. “Always” in this context could be taken to mean in all analyses that are carried
out in the search phase of the phenomenon, i.e., before the existence of the process is well
established.

PCL intervals require that one be able to produce the distribution of unconstrained limits.
In some cases this can be problematic. For example, to be conservative an experimenter
may intentionally over-estimate the systematic uncertainties by not constraining nuisance
parameters as tightly as one might believe is realistic. As a result, the ±1σ bands of the
distribution of unconstrained limits becomes broader, and in particular the lower edge of the
−1σ band decreases. If the unconstrained limit fluctuates low, then the value at which the
power constraint is applied would be lower, and thus the quoted limit is lower. So by being
conservative (with the systematics) one can wind up being more aggressive (with the limit).
This behaviour would be absent if one chose the minimum power to be 50%, in that a shift
in the width of the limit distribution does not affect its median.

As with CLs, flip-flopping is potentially an issue, but could be handled by always quoting
an upper limit. As noted above, “always” could be taken to mean always in analyses that
are carried out as a search, not for a measurement of a well-established signal process.

4.3 Properties of Feldman-Cousins

The interval is based on a likelihood-ratio test with respect to a two-sided alternative.

The Feldman-Cousins intervals are never zero length. If the data value x is observed in
the negative range, then the upper edge of the interval stays positive, and approaches zero
when x becomes increasingly negative. In such cases, the values of µ below the limit are
not excluded because the critical region for their test also includes data outcomes where x
fluctuates high relative to the rate predicted by µ.

If the upper-edge of the F-C interval is used as an upper limit, then its coverage probability
exceeds everywhere 1 − α/2 (i.e., 97.5%), approaching this value when µ becomes large.

The power of the test with respect to a one-sided alternative is not as high as that used
for PCL.

There is no flip-flopping problem to the extent that one always quotes the Feldman-
Cousins interval.

The interval can effectively be used to establish discovery at the 5σ level by choosing
α = 2.9 × 10−7.
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