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Power Constrained Limits

Abstract

We propose a method for setting limits that avoids excluding parameter values for
which the sensitivity falls below a specified threshold. These “power-constrained” limits
(PCL) address the issue that motivated the widely used CLs procedure [1], but do so in
a way that makes more transparent the properties of the statistical test to which each
value of the parameter is subjected. A case of particular interest is for upper limits on
parameters that are proportional to the cross section of a process whose existence is not
yet established. The basic idea of the power constraint can easily be applied, however, to
other types of limits.

1 Introduction

In particle physics experiments one often tests specific models that predict new phenomena.
Some regions of a model’s parameter space may be rejected by these tests; in other regions
the model may be deemed compatible with the data. This is often done in the framework
of a frequentist statistical test, which is inverted to determine a confidence interval. This
formalism is reviewed in Sec. 2.

It often happens that for some regions in a model’s parameter space, the magnitude of
the predicted effect with respect to the background-only model is extremely small. That is,
one has effectively no experimental sensitivity to those parts of the model’s parameter space.
Nevertheless, procedures based on frequentist tests may exclude these values. We discuss
how this can occur and how it has been dealt with in the past in Sections 3 and 4.

In Sec. 5 we introduce a new method for constraining confidence intervals in a way that
prevents one from excluding parameter values to which one does not have sufficient sensitivity.
As the measure of sensitivity is based on the power of a statistical test, we refer to the bounds
established by these modified intervals as power-constrained limits (PCL).

Section 6 illustrates the procedure for the case of an upper limit derived from a Gaussian
measurement. Section 8 discusses how the procedure can be applied in cases where there are
additional nuisance parameters, beyond the parameters of interest, that must be fitted using
the data. A summary and conclusions are given in Sec. 9.

2 Confidence intervals from inverting a statistical test

In this section we review the formalism of inverting a frequentist statistical test to obtain a
confidence interval. A more thorough treatment can be found in many texts, such as Ref. [2].

We consider a test for a parameter µ, which here represents the signal strength (or any
parameter proportional to the rate) of a certain process. A test of a given µ is carried out
by specifying a region of data outcomes called the critical region, which are disfavoured, in a
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sense discussed below, under assumption of µ. The data outcome could be, for example, the
number of events observed in a given region of phase space, or it could represent a larger set
of numerical values. Here we will use x to represent the data, and wµ to denote the critical
region.

The critical region is chosen to such that the probability to observe the data in it, under
assumption of the hypothesized µ, is not greater than a given constant α, called the size or
significance level of the test, i.e.,

P (x ∈ wµ|µ) ≤ α . (1)

Often by convention α = 0.05 is used. If the data are observed in the critical region, the
hypothesis µ is rejected. It is necessary in general to specify Eq. (1) as an inequality because
the data may be discrete (e.g., an integer number of events), and so there may not exist a
subset of the possible data values for which the summed probability is exactly equal to α.

It is convenient to construct from the data a test statistic qµ, such that greater qµ reflects
an increasing level of incompatibility between the data and the hypothesized parameter value
µ. In this way the boundary of the critical region in data space is given by a surface of constant
qµ, with the critical region containing the data that give the greatest values of qµ. Once such
a function has been defined, one can for any observed value qµ,obs compute a p-value, i.e., the
probability under assumption of µ to find data with equal or greater incompatibility with µ,

pµ =

∫

∞

qµ,obs

f(qµ|µ) dqµ , (2)

where f(qµ|µ) represents the probability density function (pdf) of qµ assuming a data distri-
bution with strength parameter µ. Thus the test can be equivalently formulated by rejecting
µ if its p-value is found less than α.

A test of size α can be carried out for all values of µ. The set of values not rejected
constitutes a confidence interval for µ with confidence level 1 − α. This interval will by
construction include the true value of the parameter with a probability of at least 1 − α.

The procedure described above for constructing a confidence interval by inverting a test
is not unique, however, because there are (often infinitely) many different subsets of the data
space that could be chosen for the test’s critical region wµ. This is usually selected such that
the probability to find x ∈ wµ is large if a given alternative hypothesis (or set of alternatives)
is true. The power of the test with respect to an alternative value of the parameter µ′, which
we denote here as Mµ′(µ), is

Mµ′(µ) = P (x ∈ wµ|µ
′) . (3)

If the test of µ is formulated using a p-value, such that finding pµ < α is equivalent to finding
x ∈ wµ, then the power can be written equivalently as

Mµ′(µ) = P (pµ < α|µ′) . (4)

Often the power with respect to certain alternatives is used as the criterion according to
which one chooses the critical region of a test. Confidence intervals obtained from inverting
the test thus depend on this choice. For the present discussion, however, we will assume that
the test has been defined, and the power will be used only to modify the resulting confidence
interval so that it does not exclude parameter values to which one does not have sufficient
sensitivity. This concept is defined more quantitatively in the following section.
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3 Spurious exclusion

When testing a hypothesized strength parameter µ, it may be that the magnitude of the
signal implied by µ is extremely small — so small, that the probabilities for the data are very
close to what they would be in the absence of the signal process, i.e., µ = 0. In such a case
one has little or no sensitivity to the given value of µ.

For example, Fig. 1 illustrates a situation where there is only a very small level of sen-
sitivity to a given strength parameter µ. The plot shows the pdfs of the statistic qµ under
assumption of strength parameters µ, and also assuming µ = 0, i.e., f(qµ|µ) and f(qµ|0).
If the observed value of the statistic is found in the critical region corresponding to the top
5% of f(qµ|µ), then the hypothesized µ is rejected. But as the two pdfs almost coincide, the
probability to reject µ if the true strength parameter is zero is also close to α = 0.05.

(a) (b)

Figure 1: Illustration of statistical tests of parameter values µ for the cases of (a) little sensitivity
and (b) substantial sensitivity (see text).

Figure 1(b) shows the same distributions as (a) but for a different value of µ. The size of
the test is, as in (a), equal to α. Here, however, the distribution of qµ under the assumption
of µ′ = 0 leads to a substantially greater probability to reject µ, i.e., to find qµ in the critical
region.

The sensitivity of a test of µ can be quantified using the power of the test with respect
to a stated alternative µ′, which we will take here to be the no-signal hypothesis, µ′ = 0. In
the case where the pdfs f(qµ|µ) and f(qµ|0) coincide, the probability to reject µ assuming
the alternative µ′ = 0 approaches the significance level of the test, α.

In the context of a search for a new phenomenon, this means that with probability not
less than α one will exclude hypotheses to which one has little or no sensitivity, which we
refer to here as spurious exclusion. The hypothesis might indeed be false, but if it is excluded,
this is more naturally interpreted as a data fluctuation away from the region favoured under
assumption of µ. This could result, for example, in a search for a hypothetical particle with
a mass far above the range where it would have a noticeable impact on the data. Particle
Physics experiments often carry out many searches covering a broad parameter range for
many signal models, and so spurious exclusion is in fact a problem that can arise often.

4 Previous methods that address spurious exclusion

The problem of spurious exclusion, or equivalently, having a “lucky” statistical fluctuation
lead to an anomalously strong limit, has been known in the particle physics community for
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many years. The note by Highland [3] reviews the problem and proposes several possible
solutions; further discussion can be found in the review by the Particle Data Group [4].

The problem received particular focus during searches for the Higgs Boson at the LEP
Collider in the 1990s, and led to a procedure called “CLs” [1]. Here one forms the ratio

CLs =
pµ

1 − p0

, (5)

where pµ and p0 are the p-values of the hypothesized strength parameter values µ and 0,
respectively. In the CLs procedure, µ is deemed to be excluded if one finds CLs < α.
Because CLs is aways greater than pµ, the probability of exclusion assuming µ is necessarily
less than α. Thus the quoted upper limit from the CLs procedure will be greater than the
upper limit according to the method of Sec. 2, and in this sense the CLs procedure is said to
be conservative. This is illustrated in the example described in Sec. 6.

Because of this conservatism, the frequentist coverage probability of the CLs upper limits
(i.e., the probability under assumption of µ that the interval will contain µ) is not equal to
α, but is in general larger. Although the exact coverage probabilities of CLs intervals can be
found as a function of µ, this requires additional computational effort and is not often done
in practice.

5 Power Constrained Limits

Here we propose an alternate procedure for producing intervals whose coverage properties are
easily apparent for all values of µ. To do this we break the range of µ to be tested into two
categories based on the power M0(µ) of a test of µ with respect to the no-signal alternative,
µ′ = 0. If this power is below a specified threshold Mmin, one’s sensitivity to this parameter
is deemed to be too low and the point is not regarded as testable. If the power is greater
than or equal to the threshold, then the test of size α is carried out. A value of µ is excluded
if

(a) one has sufficient sensitivity to µ, i.e., M0(µ) ≥ Mmin, and

(b) the value µ is rejected by the test, i.e., x ∈ wµ or equivalently pµ < α.

An interval is constructed from the values of µ not excluded. The coverage probability of
the interval is 100% for µ values that have power below Mmin, and α for those values with
power greater than or equal to the threshold. When reporting the result it is recommended to
indicate which parameter values were above and which below the power-constraint threshold,
and in this way one can easily see what the coverage probability is for all values of µ.

The choice of the minimum power threshold is a matter of convention. We prefer to
use Mmin = 0.16, or more precisely, Mmin = Φ(−1) = 0.1587, where Φ is the standard
normal cumulative distribution (i.e., the cumulative distribution for Gaussian with a mean of
zero and unit standard deviation). As shown below, this corresponds to applying the power
constraint if the data fluctuate one standard deviation below the expected background.

This procedure bears some similarity to one introduced recently in the astrophysics com-
munity in Ref. [5], although there the power refers to a test of the background-only (µ = 0)
hypothesis, and furthermore the result is not used in quite the same way as what we propose
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here. Note also in Ref. [5], “upper bound” is similar to what we call an upper limit, and their
term “upper limit” is taken to refer to the sensitivity threshold.

Formally, to construct the interval for µ one begins by finding the power for a test of each
µ with respect to the alternative µ′ = 0,

M0(µ) = P (x ∈ wµ|0) = P (pµ < α|0) . (6)

In some problems this can be found in closed form; otherwise it can be obtained using a Monte
Carlo calculation, in which one for every value of µ calculates the distribution of pµ using
data generated according to µ = 0. The value M0(µ) is then found simply by integrating
each distribution from zero up to the desired significance level α (e.g., 0.05).

An equivalent and in ways simpler procedure is first to carry out the statistical test
without the power constraint, and invert this to find the unconstrained confidence interval
for µ. Some of the parameter values that are excluded from this interval may be found to have
a power below the required threshold, and they are then re-included in the power-constrained
interval, which is thus by construction larger than the unconstrained one.

For example, one may be interested in finding an an upper limit, µup, i.e., the largest
value of µ not excluded. By inverting the test, one determines µup as a function of the data.
One can therefore determine the distribution of µup, e.g., by simulating the experiment many
times under assumption of µ = 0 and constructing a histogram of µup for each outcome. Then
for each value of µ one determines the corresponding power. This is the probability, under
assumption of the background-only (µ = 0) hypothesis, to reject µ, i.e., to find µ outside of
the unconstrained confidence interval. In the case of an upper limit this is

M0(µ) = P (µup < µ|0) . (7)

One should note the following caveat: It can be that for certain data outcomes, all values
of µ are excluded by the test, in which case µup is not defined. In such cases one must count
the outcomes as contributing to the probability that µ is outside the confidence interval.

With this in mind, one can then find the smallest value of µ for which the power M0(µ)
is at least equal to the minimum value Mmin, denoted here as µmin. The Power-Constrained
Limit µ∗

up is given by the larger of the unconstrained limit µup or the minimum value to which
one has sensitivity, µmin:

µ∗

up = max(µup, µmin) . (8)

6 PCL for an upper limit based on a Gaussian measurement

Often the test of µ is based on a Gaussian distributed measurement. For example, for a
sufficiently large data sample and under conditions often satisfied in practice, the distribution
of the Maximum Likelihood Estimator µ̂ has a Gaussian form with standard deviation σ and
is centred about the true µ. Here we will assume this is the case and further take σ to be
known.

For the case of an upper limit, we define the critical region to contain the lowest values
of µ̂ such that the probability to find µ̂ there is equal to α. For Gaussian distributed µ̂ with
mean µ and standard deviation σ, one defines the critical region therefore to be
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µ̂ < µ − σΦ−1(1 − α) , (9)

where Φ−1 is the inverse of the standard Gaussian cumulative distribution (the standard
normal quantile). For example, α = 0.05 gives Φ−1(1 − α) = 1.64.

Rejecting µ if the data are in the critical region gives the unconstrained upper limit,

µup = µ̂ + σΦ−1(1 − α) . (10)

The power of the test of µ with respect to the alternative µ′ = 0 is

M0(µ) = P
(

µ̂ < µ − σΦ−1(1 − α)|0
)

. (11)

Because µ̂ here follows a Gaussian distribution, the power can be written

M0(µ) = Φ

(

µ

σ
− Φ−1(1 − α)

)

. (12)

This is illustrated in Fig. 2 for α = 0.05 and σ = 1. Since the cumulative distribution Φ is
monotonically increasing and furthermore Φ(1− α) = −Φ(α), Eq. (12) gives M0(0) = α and
M0(µ) > α for all µ > 0, as can be seen in the figure.
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Figure 2: The power function
M0(µ) for a test of µ with respect
to the alternative µ′ = 0 (see text).

Requiring the power M0(µ) ≥ Mmin,

Φ

(

µ

σ
− Φ−1(1 − α)

)

≥ Mmin , (13)

implies that the smallest µ to which one is sensitive is

µmin = σ
(

Φ−1(Mmin) + Φ−1(1 − α)
)

. (14)

By combining Eqs. (10) and (14), one sees that µup is below µmin if one finds

µ̂ < σΦ−1(Mmin) . (15)

Thus one finds the following expression for the power-constrained upper limit:
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µ∗

up =







σ
(

Φ−1(Mmin) + Φ−1(1 − α)
)

µ̂ < σΦ−1(Mmin) ,

µ̂ + σΦ−1(1 − α) otherwise .
(16)

This is shown as a function of µ̂ in Fig. 3(a).
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Figure 3: (a) Upper limits from the PCL (solid), CLs and Bayesian (dashed), and classical (dotted)

procedures as a function of µ̂), which is assumed to follow a Gaussian distribution with unit standard
deviation. (b) The corresponding coverage probabilities as a function of µ.

For comparison, Fig. 3(a) also shows the upper limit without the power costraint (here
called “classical”) as well as the one obtained from the CLs procedure, which for this particular
problem coincides with the Bayesian upper limit when using a constant prior for µ ≥ 0.

Figure 3(b) shows the corresponding coverage probabilities for the upper limits. For PCL,
this is 100% for µ < µmin = σ(Φ−1(Mmin)+Φ−1(1−α)) = 0.64, and 95% otherwise. For CLs

and Bayesian, the coverage probability is everywhere greater than 95%, approaching 95% as
µ increases.

7 Distribution of upper limit and choice of minimum power

As mentioned above, we prefer to take the minimum power threshold Mmin = Φ(−1) =
0.1587. From Eq. (15) one can see that if µup follows a Gaussian distribution, this choice of
Mmin corresponds to applying the power constraint if the data fluctuate below their expected
value, under assumption of µ = 0, by more than one standard deviation. Here we will refer to
a fluctuation at this level as 1σ (downward), regardless of the distribution of µup. In fact, the
distribution of µup often is close to Gaussian so the terminology is natural and convenient.

This choice of Mmin can be motivated by the idea that a sufficiently small fluctuation
should not result in spurious exclusion of the type that the PCL and CLs procedures are
intended to prevent. If, for example, one were to require Mmin = 0.5, then one would impose
the power constraint whenever the observed limit is found below the median, i.e., half of the
time, which is not consistent with the notion of accepting small fluctuations. Therefore we
feel requiring a power of 50% is too extreme.

On the other hand, for any (unbiased) test, the power is always greater than or equal
to the significance level α. So if one were to take Mmin ≤ α then the result is the same
as the unconstrained limit. Since one often takes α = 0.05, taking Mmin = 0.05 would
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correspond to a 1.64σ downward fluctuation (i.e., Φ(−1.64) = 0.05). We therefore believe
Mmin = Φ(−1) ≈ 0.16 is a natural choice, as it allows for fluctuations up to the one-sigma
level before imposing the power constraint.

In many searches for new phenomena, one may carry out the analysis for a range of
parameters in the signal model. For example, when searching for the Higgs boson one may
carry out the analysis for each value of the mass mH. In this situation one can simply
repeat the power-constraint procedure for each value of the signal model’s parameters, as is
illustrated in Fig. 4.

Figure 4: Illustration of the
power-constrained limit as a func-
tion of a model parameter such
as the Higgs boson mass mH (see
text).

In Fig. 4, the solid line represents the median value of the unconstrained upper limit µup,
and the lower and upper dashed curves are the 0.16 and 0.84 quantiles of the distribution of
µup. The dotted curve in Fig. 4 represents a possible outcome for the unconstrained limit µup.
The minimum power is taken to be Mmin = Φ(−1) = 0.16, and thus the power-constrained
limit is the greater of the dotted and lower dashed curves, as indicated by the shaded curve.

8 Treatment of nuisance parameters

In many analyses, the probability model that describes the data is not uniquely specified
by the parameter (or parameters) of interest, but rather also contains nuisance parameters.
That is, the values of these parameters are not known a priori and they must be fitted using
the data. For concreteness suppose the model is characterized by a strength parameter µ and
a set of nuisance parameters θ = (θ1, . . . , θN ).

The nuisance parameters complicate the present problem in two ways. First, they make
it difficult to construct an unconstrained interval for the parameter of interest that has the
correct coverage probability for all values of θ. This problem has been widely discussed in
recent years, e.g., Ref. [6]. Many of the proposed procedures give intervals with correct cover-
age for some values of θ, but approximate coverage elsewhere. For example, an approximate
solution based on the profile likelihood ratio test is discussed in Refs. [7]. For the present
discussion we will assume that a test procedure that gives an unconstrained interval has been
chosen. Its coverage probability may or may not be exactly equal to the nominal confidence
level for all values of θ.

Of more direct concern for the present paper is the fact that the power of the test of µ

with respect to the no-signal alternative will depend in general on the nuisance parameters
θ. As the power is intended to represent the probability, under assumption of the no-signal
model, to reject a given value of µ, we take the values of θ that are in best agreement with
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the actual data under assumption of µ = 0. We denote these as
ˆ̂
θ(0), i.e., they are the

conditional estimators for θ under assumption of µ = 0.

As a consequence of this choice, the power M0(µ) becomes a function of the actual data,
since the data are used to determine values for the nuisance parameters. Thus the range of µ

values where one has sufficient sensitivity also depends to some extent on the data. This may
seem counter-intuitive, since the power of a specific test, i.e., at a given point in (µ,θ)-space,
is independent of the data. But there is a certain power M0(µ) for every point in θ-space,
and one uses the data to choose the point at which one quotes the power.

Alternatively, one could require that the power is greater than or equal to the minimum
threshold for all values of the nuisance parameters in a specified range. In this way the set
of µ values for which one has sufficient sensitivity would not depend on the data. As this
would entail considerable computational effort, however, we prefer to define the power using
a specific point in the nuisance-parameter space as described above.

9 Summary and conclusions

We propose a power-constraint procedure for modifying confidence limits so that parameter
values to which one has little or no sensitivity are not excluded. The sensitivity is measured
using the power of the test of the parameter with respect to the no-signal alternative. The
coverage probability of the resulting limits is equal to the nominal confidence level (e.g., 95%)
for parameter values to which one’s sensitivity is above a given threshold, and 100% if the
sensitivity is below the threshold. This can be contrasted with the CLs procedure, for which
the coverage probability is always greater than the nominal confidence level by an amount
that varies continuously as a function of the assumed parameter value.

The power used for the sensitivity threshold is a matter of convention, but recommend
taking this to be Mmin = Φ(−1) ≈ 0.16. This is consistent with allowing for reasonably small
downward fluctuations of the data by drawing the boundary at the one-sigma level. Allowing
more than 1.64σ fluctuations would mean the power constraint is never imposed (for a 95%
confidence level limit), and requiring Mmin = 0.5 would impose the power constraint half of
the time, including cases with only an infinitesimal downward fluctuation.

The PCL procedure is easily extended to problems with nuisance parameters. There we
define the power with respect to the background-only (µ = 0) model using the conditional
estimates of the nuisance parameters given µ = 0.

The PCL procedure is particularly useful in cases where spurious exclusion is problematic,
such as when a one-sided test is inverted to give an upper limit. It can be applied, however,
to any confidence interval, including those based on inversion of a likelihood-ratio test (i.e.,
Feldman-Cousins intervals [8]).

When reporting results, we recommend to show both the constrained and unconstrained
limits. In this way one can know whether a given parameter value is not rejected because the
data are in good agreement with it, or rather because it is a value to which the sensitivity is
deemed to low to allow exclusion.
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[6] Louis Lyons and Müge Karagöz Ünel (eds.), Statistical Problems in Particle Physics,
Astrophysics and Cosmology, Proceedings of PHYSTAT05, Imperial College Press
(2006); see, e.g., the section Nuisance Parameters/Limits/Discovery.

[7] Glen Cowan, Kyle Cranmer, Eilam Gross and Ofer Vitells, Eur. Phys. J. C 71 (2011)
1-19.

[8] Robert D. Cousins and Gary J. Feldman, Phys. Rev. D 57, 3873 (1998).

10


