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Likelihood ratio test to determine number of parameters

We discuss how to determine the optimal parametric function needed to describe a dis-
tribution by using a likelihood ratio test. The note developed out of discussions with Eilam
Gross, Sascha Caron, Stephan Horner and from the talk by Horner [1] at the ATLAS Statis-
tics Forum. Similar methods have been used in many other analyses, e.g., the b → sγ
measurement by the BaBar Collaboration [2].

The basic idea is to consider a family of functions to fit the data with an increasing number
of parameters and thus increasing flexibility. Beginning with the most inflexible model, one
successively increases the number of parameters until the statistical test indicates that the
model and data are in acceptable agreement. The statistical errors in the parameters of
interest are increased as a result of their correlations with the nuisance parameters added to
make the function sufficiently flexible. In this way the systematic uncertainty is incorporated
directly into the statistical errors.

The difficulty with this procedure is in coming up with an acceptable family of parametric
functions, as this choice will depend on the problem. In this note we explore an example
that starts with the functional form as predicted by a Monte Carlo model, and then modifies
it by multiplication with a linear combination of Bernstein basis polynomials. A goodness-
of-fit test based on the profile likelihood ratio is used to determine the optimal order of the
polynomials.

Suppose an analysis requires modeling a distribution of a variable x. In principle a Monte
Carlo model can be used to give an absolute prediction for the number of entries in each
bin of a histogram. In practice one does not regard the MC prediction as perfect, and there
would be a systematic uncertainty connected with the assumption of this model.

Let ν = (ν1, . . . , νN ) denote the mean number of entries predicted in the N bins of the
histogram of x by a model, and let the number of entries observed in the data be n =
(n1, . . . , nN ). Suppose that the true model, i.e., the one from which the data are generated,
is ν(t), and the hypothesized models that we will consider to describe the data are denoted
with a numerical superscript, e.g., ν (0), ν(1), etc. In this example we will model the number
of entries in each bin of the histogram as an independent Poisson distributed value. That is,
the probability for the data n is

P (n;ν) =
N
∏

i=1

νni

i

ni!
e−νi . (1)

Figure 1 shows possible distributions with a simple zeroth-order approximation in (a),
the true (unknown) distribution in (b) and a possible data set in (c). The zeroth-order model
could, for example, be based on Monte Carlo, which is in general systematically different from
Nature. In addition, an MC prediction will in general have statistical fluctuations because of
the limited number of events generated. Here these fluctuations have been suppressed as the
point of the present example is to explore how to account for systematic effects. Incorporating
the statistical errors from MC is straightforward and is discussed e.g., in Refs. [3, 4].
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Figure 1: A sample distribution: (a) zeroth-order model (e.g., MC), (b) true (in general unknown),
and (c) a possible data set generated from the true distribution.

The data in Fig. 1(c) clearly differ significantly from the zeroth-order model in (a). To
quantify the level of compatibility one could compute Pearson’s chi-square statistic,

χ2
P =

N
∑

i=1

(ni − νi)
2

νi
. (2)

An almost equivalent statistic is based on the likelihood ratio

λ(ν) =
L(ν)

L(ν̂)
(3)

where L(ν) = P (n;ν) is the likelihood of the hypothesized model ν, and ν̂ is the maximum
likelihood (ML) estimator for ν, i.e., the values of ν1, . . . , νN which maximize the likelihood.
By setting the derivative of L(ν) equal to zero and solving one easily finds

ν̂i = ni (4)

for all i.

If the model ν is correct, then Wilks’ theorem [5] states that the distribution of the
statistic

qν = −2 lnλ(ν) = 2
N

∑

i=1

(

ni ln
ni

νi
+ νi − ni

)

(5)

approaches a chi-square distribution for N degrees of freedom for a sufficiently large data
sample.1 In fact in many practical examples the chi-square approximation is extremely good
even for moderate samples, e.g., ni roughly a half dozen or more. Details on the regularity
conditions required for Wilks’ theorem to be valid are discussed in standard texts such as [6].
Pearson’s χ2

P and the statistic qν are for the present example very similar; here we will use
qν .

For either goodness-of-fit statistic, χ2
P or qν , one would quantify the compatibility between

data and model by giving the p-value. This is the probability, under assumption of the model

1In computing qν , the logarithmic term should be skipped if ni = 0.
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ν, to obtain a value of the statistic greater than or equal to that found with the actual data.
That is,

p =

∫

∞

q
ν,obs

fχ2(z;N) dz , (6)

where

fχ2(z;N) =
1

2N/2Γ(N/2)
zN/2−1e−z/2 (7)

is the chi-square distribution for N degrees of freedom, and Γ is the Euler gamma function.

A comparison between the data set in Fig. 1(c) and the model in (a) results in a value
of qν = 258.8. There are N = 50 bins in the histogram, and using Eq. 6 gives a p-value of
6 × 10−30. One would clearly reject the hypothesized model.

We can improve the level of agreement between the data and model by introducing further
adjustable parameters. One way to do this is to scale the zeroth-order model ν (0) by a factor
s, which depends on the value of the variable x (i.e., it depends on the bin number), and which
contains a set of adjustable parameters θ = (θ1, . . . , θM ). That is, the modified prediction
for the mean number of entries in the ith bin is

νi → νis(xi;θ) , (8)

where xi is the value of x in the centre of the ith bin.

In this note we examine using a superposition of Bernstein basis polynomials for the
scaling function s. The set of m + 1 Bernstein basis polynomials of order m are defined as
(see, e.g., [7]),

bk,m(x) =
m!

k!(m − k)!
xk(1 − x)m−k . (9)

These are nonzero in the range [0, 1], which corresponds to the range of the variable x in the
example of Fig. 1. Here we will assume that the variable in question has been translated and
scaled to lie in this range. The Bernstein basis polynomials for orders 0 through 5 are shown
in Fig. 2.

The scaling function s(x) is taken as a linear combination of the basis polynomials (i.e.,
s is a Bernstein polynomial),

s(x) =
m

∑

k=0

βkbk,m(x) . (10)

For βk = 1, k = 0, . . . ,m, one has s(x) = 1, so it is easy to identify the point in parameter
space that corresponds to no scaling. An important property of Bernstein polynomials is
that a basis polynomial of a given order m − 1 can always be written in terms of those of
order m:

bk,m−1(x) =
m − k

m
bk,m(x) +

k + 1

m
bk+1,m(x) . (11)
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Figure 2: Bernstein basis polynomials of different orders n.

This means that the Bernstein polynomials defined using basis functions of successively in-
creasing order form a nested family. That is, the model of order m contains as a special case
the model of order m− 1. This will be important in constructing the likelihood ratio test to
determine whether it is necessary to increase the number of parameters in the model.

The strategy proposed in this note is to begin with the zeroth order model ν (0) and modify
it by allowing for a simple scale factor, i.e.,

s(x;β0) = β0b0,0(x) = β0 , (12)

as b0,0 = 1. One can then construct a likelihood ratio test of the hypothesis ν (0) versus

the alternative ν
(1)
i = ν

(0)
i s(xi;β0) where β0 is treated as an adjustable parameter. The

hypothesis ν(0) corresponds to the special case β0 = 1. The likelihood ratio that compares
the two hypotheses is

λ =
L(β0 = 1)

L(β̂0)
, (13)

where β̂0 is the ML estimator of β0. As before it is convenient to use the equivalent logarithmic
variable

q = −2 ln λ . (14)

If the data favour the hypothesis β0 = 1, then β̂0 will be close to one, λ will also be
close to unity, and therefore q will be small. Larger values of q indicate that the β0 = 1
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hypothesis is in poor agreement with the data, and that some other value of β0 is favoured.
Wilks’ theorem states that under the hypothesis of β0 = 1, the sampling distribution of q
should follow a chi-square distribution for one degree of freedom. Therefore the p-value of
this hypothesis can be found from

p =

∫

∞

qobs

fχ2(z; 1) dz . (15)

If the p-value is below a given threshold, say, pcut = 0.1 or 0.2, one would conclude that an
adjustable value of β0 is needed.

One then simply iterates this procedure, at each stage increasing the order of the Bernstein
basis polynomials by one. That is, if one has decided that the data require modification by
Bernstein basis polynomials of order m (i.e., β(m) = (β0, . . . , βm) as adjustable parameters),
then one can test whether the data prefer to have the corresponding model of order m + 1,
using the likelihood ratio

λ =
L(β̂

(m)
)

L(β̂
(m+1)

)
. (16)

Under the assumption that the more restrictive model in the numerator is correct and pro-
viding the data sample is not too small, q = −2 ln λ will follow a chi-square distribution for
one degree of freedom. At each stage one computes the likelihood ratio and from it obtains
a p-value. If the p-value is below the threshold pcut, then one concludes that the additional
parameter is required to describe the data.

In addition one would look at the overall goodness-of-fit using the statistic qν given by
Eq. (5), where here ν represents the modified model from Eq. (8). If the model is correct
then this should follow a chi-square distribution for N − npar degrees of freedom, where
npar = m + 1 is the order of the Bernstein basis polynomials.

In the example shown in Fig. 1, the “true” distribution in (b) was in fact produced
by distorting the distribution in (a) with a 2nd order Bernstein polynomial using β0 = 1,
β1 = 0.5 and β2 = 1.5. Recall that the original undistorted distribution corresponds to
β0 = β1 = β2 = 1. So in this case one expects that to be well described the data will
on average require a scale factor based on a 2nd-order basis function. This is in fact what
one sees in the fits shown in Fig. 3; the fit with three adjustable parameters provides a
good description of the data. Increasing the number of parameters further does not improve
substantially the goodness-of-fit. This is also evident from the values of the test statistic q
and qν obtained using different numbers of free parameters as shown in Table 1.

Table 1: Values of the variables qν and q and the corresponding p-values obtained from fits with
different numbers of adjustable parameters.

npar qν pν q p

0 258.8 6.1 × 10−30 98.9 2.6 × 10−23

1 159.9 1.1 × 10−13 15.4 8.9 × 10−05

2 144.5 1.3 × 10−11 112.0 3.5 × 10−26

3 32.5 0.95 0.0013 0.97
4 32.5 0.93 0.26 0.61
5 32.2 0.92 0.37 0.54
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Figure 3: Fits for different numbers of adjustable parameters.

We can investigate this further by simulating the experiment many times. Figure 4 shows
the distributions of the test variable q. For Fig. 4(a) this is the goodness-of-fit statistic for
the zeroth-order model. For successive plots it shows the distribution of q = −2 ln λ where
the likelihood ratio is based on the numbers of parameters indicated. From the plots one sees
that distribution of q based on the comparison of the 3 and 4 parameter models is close to a
chi-square distribution for one degree of freedom. So in most cases one would not reject the
3-parameter hypothesis.

Once the optimal number of parameters has been determine, then the correlations between
the estimators of all of the parameters, including the new ones included in the enlarged model,
will result in larger statistical errors for the parameters of interest. In this way the systematic
uncertainty connected with the original model is taken into account.
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Figure 4: Distributions of the test variable q (a) for the zeroth-order model and (b)–(f) when com-
paring models with differing numbers of additional parameters.
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