
Statistical Data Analysis
Problem Sheet # 5
Due Monday 16 November 2020

For following exercises, please turn in the requested calculations, numbers and plots. Print
any relevant code (only modules you wrote or modified in a nontrivial way) into pdf files and
merge this with the rest of your problem sheet.

Exercise 1: For this exercise you will do a simple multivariate analysis either with the
python scikit-learn package or using C++ with TMVA from ROOT. The input data
consists of events of two types: signal and background. Three quantities x = (x1, x2, x3) are
are measured for each event. The marginal distributions of each of the three components are
shown in Fig. 1.

−2.5 0.0 2.5
x1

0.0

0.2

0.4

0.6

f 1
(x

1)

−2 0 2 4
x2

0.0

0.2

0.4

0.6

f 2
(x

2)

0.0 0.5 1.0
x3

0

1

2

3

4

f 3
(x

3)

(a) (b) (c)

Figure 1: Marginal distributions of the three components of the feature vector x = (x1, x2, x3) for
events of the two classes: signal (y = 1, blue) and background (y = 0, red).

For the python option: This option uses python’s scikit-learn package. As a starting
point you can use the code here:

http://www.pp.rhul.ac.uk/~cowan/stat/python/sklearn/

The can use directly the input files signal.txt and background.txt, which contain each
10 000 events. For information on the various classifiers in scikit-learn see the documents
on scikit-learn.org, specifically the very useful sample program at

scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

For the C++ option: As a starting point use the code from

http://www.pp.rhul.ac.uk/~cowan/stat/root/tmva/

Everything needed is within that web page, but to get all of the code in the correct directories
it is best to first copy the file tmvaExamples.tar to your working directory on either the
RHUL linux cluster or a similar environment with root 6 installed.

Then from your directory type tar -xvf tmvaExamples.tar. This will unpack all of the
files into the correct subdirectories within your working directory. Look in the readme.txt

file for further details on how to build and run the various programs. Briefly, the relevant
subdirectories and their programs are:

generate Contains a Monte Carlo program that generates data for training and testing of
classifiers and stores them in the files trainingData.root and testData.root. These files



are already there and you do not need to recreate them unless you want to generate more
data or change the parameters of the models.

tmvaTrain Trains the classifier. In the default version, it determines the coefficients of
a Fisher discriminant. When you run the program, the coefficients of the discriminating
functions are written into a subdirectory dataset/weights as xml files.

analyzeData Analyzes the data using the test sample testData.root and the trained clas-
sifier.

To modify the programs tmvaTrain.cc to include a multilayer perceptron with one hidden
layer containing 3 nodes, or to have a Boosted Decision Tree with 200 boosting iterations use
you need to add:

factory->BookMethod(TMVA::Types::kMLP, "MLP", "H:!V:HiddenLayers=3");

factory->BookMethod(TMVA::Types::kBDT, "BDT200", "NTrees=200:BoostType=AdaBoost");

See the TMVA manual for more details. This will store the classifier’s parameters in a file in
the dataset/weights subdirectory.

Exercise 1: The data files supplied contain events of the two classes, signal and background.
Each event is characterized by three quantities, x = (x1, x2, x3).

The program provided already contains a Fisher discriminant and allows one to evaluate
for each event the test statistic t(x). Using this we want to select a sample of events enriched
in signal by requiring t > tc with tc = 0. That is, we test for each event the hypothesis that it
is of the background type, and we reject that hypothesis (and thus select as signal) if t > tc.

1(a) The code you are given calculates already the signal efficiency (the power of the test),
i.e., εs = P (t > tc|s). Add the necessary code to find the background efficiency (the size of
the test) εb = P (t > 0|b).

1(b) What is the signal purity of the selected sample, i.e., P (s|t > tc)? Assume that the two
event classes have equal prior probabilities.

1(c) Modify your program to include a multilayer perceptron with one hidden layer containing
3 nodes. Using the test data samples, make a histogram of the neural network’s decision
function for both event types. (With scikit-learn, you will need to use instead the output of
the function predict_proba, which is monotonically related to the MLP output.) Compare
to the corresponding histogram from the Fisher discriminant.

1(d) Select signal events by requiring tMLP > tc with tc = 0.5. What are the signal and
background efficiencies? What is the signal purity assuming equal prior probabilities for the
two event types?

Exercise 2 (not required, but recommended for PhD students) This exercise is a
continuation of Ex. 1.

2(a) Modify your program to include a boosted decision tree with 200 boosting iterations.

2(b) Now repeat this for different numbers of boosting iterations, say, 1, 2, 5, 10, 20, 50,
100, 200, 500, 1000, 10,000, 50,000.

For each classifier, compute the total error rate using a boundary value of tc = 0. That
is, compute the fraction of events (signal and background) that are found on the wrong side
of the boundary. Plot this as a function of the number of boosting iterations for both the
training sample and the statistically independent test sample. Determine roughly the optimal
number of boosting iterations.

2


