Statistical Data Analysis Problem sheet 9 Due Monday, 14 December 2020

Problem 1: Consider a Gaussian distributed random variable x with mean of zero and a variance v, i.e., the pdf of x is

$$f(x|v) = \frac{1}{\sqrt{2\pi v}} e^{-x^2/2v}$$
.

Suppose we have a sample of N independent values x_1, \ldots, x_N that follow this pdf, and we wish to make inference about the unknown variance v.

1(a) [3 marks] Write down the log-likelihood function $\ln L(v)$ and show that the maximum-likelihood estimator for v is

$$\hat{v} = \frac{1}{N} \sum_{i=1}^{N} x_i^2 \; .$$

1(b) [2 marks] Show that the estimator \hat{v} is unbiased.

1(c) [3 marks] One can show that the statistic $t = N\hat{v}/v$ follows a chi-squared distribution for N degrees of freedom. Recall also that the chi-squared distribution has a variance of 2N. Using this information, find the variance of \hat{v} .

1(d) [3 marks] Using again the fact that $t = N\hat{v}/v$ follows a chi-squared distribution with N degrees of freedom, show that the p-value p_v for a hypothesized value of v can be written

$$p_v = F_{\chi^2_N} \left(N \hat{v} / v \right) \;,$$

where $F_{\chi_N^2}$ is the cumulative chi-squared distribution for N degrees of freedom. For the p-value, take the set of outcomes with \hat{v} less than the one observed as representing increasing incompatibility with the hypothesized v.

1(e) [3 marks] Find the upper limit at confidence level $1 - \alpha$ for v. Express the answer in terms of N, \hat{v} and an appropriate quantile of the chi-squared distribution.

1(f) [3 marks] Suppose now we want to use the Bayesian approach to estimate v. Show that the Jeffreys prior $\pi_{J}(v)$ for v is

$$\pi_{\rm J}(v) \propto rac{1}{v} \; .$$

1(g) [3 marks] Using the Jeffreys prior from (f), write down the posterior probability $p(v|x_1, \ldots, x_N)$ as a proportionality. Show that the mode of the posterior is

$$mode[v] = \frac{1}{N+2} \sum_{i=1}^{N} x_i^2.$$