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1(a) [3 marks] As the xi are all independent, the likelihood is found from the product of pdfs,

L(v) =
N∏
i=1

1√
2πv

e−x
2
i /2v ,

and the log-likelihood is

lnL(v) = −N
2

ln v − 1

2v

N∑
i=1

x2i + C ,

where C represents terms that do not depend on v. Setting the derivative of lnL to zero,

∂ lnL

∂v
= −N

2v
+

1

2v2

N∑
i=1

x2i = 0 ,

and solving for v gives the ML estimators,

v̂ =
1

N

N∑
i=1

x2i .

1(b) [2 marks] Using E[xi] = 0 and therefore E[x2i ] = v, the expectation value of v̂ is

E[v̂] =
1

N

N∑
i=1

E[x2i ] = v ,

and therefore the bias is zero.

1(c) [3 marks] We are told that t = Nv̂/v follows a chi-squared distribution for N degrees of
freedom, and therefore has variance 2N . From the variance of t we have

V [t] = V

[
Nv̂

v

]
=
N2

v2
V [v̂] ,

and since V [t] = 2N we find

V [v̂] =
2v2

N
.

1(d) [3] marks] Again using t = Nv̂/v, we are told to take small values of t as representing
lower compatibility. The p-value of v is therefore



pv = P (t ≤ tobs|v) = Fχ2
N

(tobs)

where Fχ2
N

is the chi-squared cumulative distribution for N degrees of freedom, and where tobs
refers to the observed value of the statistic. Taking v̂ = vtobs/N to mean the observed value of
the estimator, we obtain the desired result,

pv = Fχ2
N

(Nv̂/v) .

1(e) [3 marks] To find the upper limit on v, we set the p-value equal to α = 1−CL and solve
for v, i.e.,

pv = Fχ2
N

(Nv̂/v) = α .

Applying the inverse of the cumulative distribution (the chi-squared quantile) to each side gives

Nv̂

v
= F−1

χ2
N

(α) .

Solving for v gives the upper limit,

vup =
Nv̂

F−1
χ2
N

(α)
.

1(f) [3 marks] The Jeffreys prior is πJ(v) ∝
√
I where I is the Fisher information. For this we

need

∂2 lnL

∂v2
=

N

2v2
− 1

v3

N∑
i=1

x2i .

The Fisher information is therefore

I = −E
[
∂2 lnL

∂v2

]
= − N

2v2
+

1

v3

N∑
i=1

E[x2i ] =
N

2v2
,

where to obtain the final equality we used E[x2i ] = v. Therefore the Jeffreys prior is

πJ(v) ∝
√
I ∝ 1

v
.

1(g) [3 marks] Using Bayes’ theorem as a proportionality, the posterior probability for v given
~x = (x1, . . . , xN ) is

p(v|~x) ∝ p(~x|v)πJ(v) ∝ 1

v

N∏
i=1

1√
2πv

e−x
2
i /2v ∝ v−N/2−1 exp

[
− 1

2v

N∑
i=1

x2i

]
.
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To find the posterior mode we set its derivative to zero. Letting Q =
∑N
i=1 x

2
i we obtain

∂p(v|~x)

∂v
∝ v−N/2−1eQ

Q

2v2
+ eQ

(
−N

2
− 1

)
v−N/2−2 = 0 .

Solving for v gives the mode,

mode[v] =
1

N + 2

N∑
i=1

x2i .
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