
G. Cowan
Royal Holloway Physics
December 2022, Version 1.0

Exercise on Bayesian Parameter Estimation

This exercise provides an introduction to Bayesian parameter estimation. The program
bayesFit.py generates a data sample x = (x1, . . . , xn) of n = 400 independent values sam-
pled from a pdf that is a mixture of an exponential and a Gaussian,

f(x|λ) = θ
1√
2πσ

e−(x−µ)2/2σ2
+ (1− θ)

1

ξ
e−x/ξ . (1)

Here λ = (θ, µ, σ, ξ) represents the vector of parameters. Below we will regard the am-
plitude of the Gaussian θ as the parameter of interest an the rest as nuisance parameters.
The program finds the posterior probability of the parameters using Bayes’ theorem, finds
its maximum to obtain the MAP (maximum a posteriori probability) estimators, and then
marginalizes over the nuisance parameters using Markov Chain Monte Carlo (MCMC).

Generating the data and maximizing the posterior pdf are done in bayesFit.py in essen-
tially the same way as in the maximum-likelihood fitting program mlFit.py. Please refer to
the material for the exercise with mlFit.py for more information on those steps, including
installation of the iminuit package.

The program first finds the posterior pdf p(λ|x) for the parameters using Bayes’ theorem,

p(λ|x) ∝ p(x|λ)π(λ) , (2)

where

p(x|λ) =
n∏

i=1

f(xi|λ) (3)

is the likelihood (probability for the data given the parameters) and π(λ) is the prior pdf for
the parameters. By initial default, the joint prior pdf for all the parameters λ = (θ, µ, σ, ξ)
is taken to be a constant.

The program first finds the maximum of the posterior pdf using the program iminuit.
The resulting parameter values are the MAP estimators, which coincide with the maximum
likelihood estimators (MLEs) for the special case where the prior is constant.

Next, the program marginalizes the posterior over the nuisance parameters with the
Metropolis-Hastings MCMC algorithm. The algorithm samples the full parameter space
according to the posterior pdf (here called the target density) using an iterative rule to
proceed from a point λi to a new value λi+1:

1. Generate a proposed point λ ∼ q(λ|λi), where the proposal density q is a multivariate
Gaussian with mean λi and covariance matrix U , described below.

2. Calculate the ratio α = min [1, q(λ|λi)/q(λi|λ)].

3. Generate u ∼ Uniform[0, 1].

4. If u < α, accept the proposed point, i.e., λi+1 = λ, otherwise repeat the old point, i.e.,
λi+1 = λi.

As the starting point λ0 one can use any point that is reasonably well contained within the
bulk of the target density’s probability; by default the program bayesFit.py uses the MAP
estimate.

The covariance matrix U of the proposal density is taken here to be a scaled version of
the covariance matrix V from the peak of the posterior pdf, i.e.,

U = sV . (4)

The value of s can be adjusted to minimize the number of computing steps needed to accu-
rately determine the marginal pdfs of the parameters. The autocorrelation function described
below provides a quantitative measure of performance. As an approximate guide (see, e.g.,
Gareth O. Roberts and Jeffrey S. Rosenthal, Statistical Science 2001, Vol. 16, No. 4, 351–367)
one can take

s =
(2.38)2

Ndim
, (5)

where Ndim is the number of dimensions of the parameter space. This rule provides the
optimal convergence if the parameters are independent, and corresponds to the fraction A of
proposed values that are accepted in step (4) above of A = 0.234.

The autocorrelation function (ACF) is the correlation coefficient between an element of
the series of generated parameter values and the value separated from it by a lag ℓ,

ACF =
1

N

N∑
i=1

xixi+ℓ

σ2
(6)

where N is the number of points generated, xi = θi − ⟨θ⟩ is the ith value of the parameter
(e.g. θ) minus the mean from the whole sequence, and σ2 = ⟨(θ − ⟨θ⟩)2⟩ is the parameter’s
variance.

By construction ACF = 1 for ℓ = 0. If all of the points in the sequence were independent,
the ACF would be zero for ℓ ≥ 1. The points generated by MCMC are not independent,
with the ACF falling off as a function of the lag. A faster decrease of the ACF corresponds
to better convergence of the generated series.

Exercises:

1(a) Run the program and examine the plots. The first one (Fig. 1 below) shows the data
values as ticks on the x axis together with the fitted curve (evaluated with MAP estimators).
The uncertainties on the parameters correspond to the covariance Vij = cov[λi, λj] that
iminuit finds by approximating the posterior as a multivariate Gaussian near its maximum
(similar to finding the covariance matrix of the MLEs).

1(b) Look at the output of bayesFit.py from the MCMC algorithm: The plots include:

1. Trace plots of each of the parameters (Fig. 2). In some problems it can be useful to
discard a subset of the points (called “burn-in”) if the starting point λ0 is too far from
the main concentration of the target density’s probability; this is indicated in the trace
plots with a vertical yellow bar.

2. Marginal distributions of the individual parameters (Fig. 3). The histograms are nor-
malized to unit area and the MAP estimates are indicated with the vertical bars.

3. The autocorrelation function for the parameters (Fig. 4).

2

Change the data sample size from n = 400 to 200 and 1000 and note the changes in the
results.

Using again n = 400, fix the parameters µ and σ (by changing the corresponding elements in
the array parfix from False to True) and note the changes in the results. When finished,
go back to having all four parameters free.

Change the number of MCMC iterations from 10 000 to 100 000 and note the change in the
results, particularly in the structures you see in the trace plots. (This probably takes some
time to run; for the rest of the exercises it is probably best to change back to 10 000 iterations.

1(c) Change the prior pdfs for ξ and σ to be π(ξ) ∝ 1/ξ and π(σ) ∝ 1/σ and note the change
in the results. When finished, go back to constant priors.

1(d) Suppose that one has an independent estimate u of the parameter ξ in addition to the
n = 400 values of x. Treat u as Gaussian distributed with a mean ξ and standard deviation
σu = 0.5 and take the observed value u = 5. Find the log-likelihood function that includes
both the primary measurements (x1, . . . , xn) and the auxiliary measurement u and modify
the fitting program accordingly. Investigate how the results are affected by including u.

1(e) Using the functions cc_interval and HPD_interval provided in bayesFit.py, compute
the central credible interval and HPD (highest probability density) interval for the parameter
of interest θ using a credibility level of 68.3%. Compare these to the intervals one obtains
from a point estimate (the MAP estimate, posterior median or posterior mean) plus or minus
one standard deviation. For the standard deviation, try using both the sample standard
deviation from the MCMC values and the standard deviation found by iminuit, which is
based on a Gaussian approximation to the peak of the posterior. Find the estimates and
intervales both with and without the auxiliary measurement of ξ as in (d) above and note
how this effects the results.

3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

f(x
)

MAP Estimators

 = 0.1979±0.0816

 = 9.3093±0.7853

 = 2.3472±0.7197

 = 5.0546±0.7553

Figure 1: The data values (x1, . . . , xn) as tick marks with the fitted curve with parameter
values from the maximum of the posterior pdf.

0

1

0

10

5

10

0 2000 4000 6000 8000 10000
iteration number

2.5
5.0
7.5

Figure 2: Trace plots of the parameter values sampled by MCMC. The end of the burn-in
period is indicated with the vertical bar.

4

0.0 0.2 0.4 0.6 0.8 1.0
0

5

pd
f

0 2 4 6 8 10
0.00

0.25pd
f

2 4 6 8 10
0.00

0.25pd
f

1 2 3 4 5 6 7 8
0.0

0.5

pd
f

Figure 3: Marginal distributions of the parameters from MCMC. The MAP estimates are
indicated with vertical bars.

0.0

0.5

1.0

AC
F[

]

0.0

0.5

1.0

AC
F[

]

0.0

0.5

1.0

AC
F[

]

0 25 50 75 100 125 150 175 200
lag

0.0

0.5

1.0

AC
F[

]

Figure 4: The autocorrelation function (ACF) for the parameters θ, µ, σ and ξ as a function
of the lag. The correlation length is the lag at which the ACF falls to 0.5.

5

