Statistical Data Analysis Problem sheet 9 Due Monday, 12 December 2022

Problem 1: The binomial distribution is given by

$$f(n; N, \theta) = \frac{N!}{n!(N-n)!} \theta^n (1-\theta)^{N-n} ,$$

where n is the number of 'successes' in N independent trials, with a success probability of θ for each trial. Recall that the expectation value and variance of n are $E[n] = N\theta$ and $V[n] = N\theta(1-\theta)$, respectively. Suppose we have a single observation of n and using this we want to estimate the parameter θ .

1(a) [4 marks] Find the maximum likelihood estimator $\hat{\theta}$.

1(b) [4 marks] Show that $\hat{\theta}$ has zero bias and find its variance.

1(c) [4 marks] Suppose we observe n = 0 for N = 10 trials. Find the upper limit for θ at a confidence level of CL = 95% and evaluate numerically.

1(d) [4 marks] Suppose we treat the problem with the Bayesian approach using the Jeffreys prior, $\pi(\theta) \propto \sqrt{I(\theta)}$, where

$$I(\theta) = -E\left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]$$

is the expected Fisher information. Find the Jeffreys prior $\pi(\theta)$ and the posterior pdf $p(\theta|n)$ as proportionalities.

1(e) [4 marks] Explain how in the Bayesian approach how one would determine an upper limit on θ using the result from (d). (You do not actually have to calculate the upper limit.)

Explain briefly the differences in the interpretation between frequentist and Bayesian upper limits.