Statistical Data Analysis
Problem sheet 2
Due Monday, 16 October 2023
Exercise 1 [10 marks]: Consider (as in Problem Sheet 1) the joint pdf for the continuous random variables $x$ and $y$

$$
f(x, y)= \begin{cases}\frac{1}{\pi R^{2}} & x^{2}+y^{2} \leq R^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Define the new variables

$$
\begin{aligned}
& u=\sqrt{x^{2}+y^{2}} \\
& v=\tan ^{-1}(y / x)
\end{aligned}
$$

That is, $u$ corresponds to the radius and $v$ to the azimuthal angle in plane polar coordinates, with $u \geq 0$ and $0 \leq v<2 \pi$.
(a) [5] Find the joint pdf of $u$ and $v$. (Use the inverse of the transformation $x=u \cos v$, $y=u \sin v$.) Are $u$ and $v$ independent? Justify your answer.
(b) [5] Find the marginal pdfs for $u$ and $v$.

Exercise 2 [5 marks]: Consider $n$ random variables $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ that follow a joint pdf $f(\vec{x})$ and constants $c_{0}, c_{1}, \ldots, c_{n}$.
(a) [1 mark] Starting from the definition of the expectation value for continuous random variables, show that

$$
E\left[c_{0}+\sum_{i=1}^{n} c_{i} x_{i}\right]=c_{0}+\sum_{i=1}^{n} c_{i} E\left[x_{i}\right]
$$

(b) [4 marks] Using the result from (a), show that the variance is

$$
V\left[c_{0}+\sum_{i=1}^{n} c_{i} x_{i}\right]=\sum_{i, j=1}^{n} c_{i} c_{j} \operatorname{cov}\left[x_{i}, x_{j}\right]
$$

For the variance above, find what this reduces to in the case where the variables $x_{1}, \ldots, x_{n}$ are uncorrelated.

Exercise 3 [5 marks]: Consider two random variables $x$ and $y$ and a constant $\alpha$. From the previous exercise we have (no need to rederive)

$$
V[\alpha x+y]=\alpha^{2} V[x]+V[y]+2 \alpha \operatorname{cov}[x, y]=\alpha^{2} \sigma_{x}^{2}+\sigma_{y}^{2}+2 \alpha \rho \sigma_{x} \sigma_{y}
$$

where $\sigma_{x}^{2}=V[x], \sigma_{y}^{2}=V[y]$, and the correlation coefficient is $\rho=\operatorname{cov}[x, y] / \sigma_{x} \sigma_{y}$. Using this result, show that the correlation coefficient always lies in the range $-1 \leq \rho \leq 1$. (Use the fact that the variance $V[\alpha x+y]$ is always greater than or equal to zero and consider the cases $\alpha= \pm \sigma_{y} / \sigma_{x}$.)

