Statistical Data Analysis

Problem sheet 7
Due Monday 20 November, 2023
Exercise 1: Suppose the random variable x follows a special case of the gamma pdf,

$$
f(x ; \theta)=\frac{x^{2}}{2 \theta^{3}} e^{-x / \theta}
$$

with $x \geq 0$ and $\theta>0$. The expectation value and variance of x are $E[x]=3 \theta, V[x]=3 \theta^{2}$. Consider a sample of n independent values x_{1}, \ldots, x_{n} from this pdf, with which we want to estimate θ. For parts (a)-(c), suppose that n is a fixed constant.
$\mathbf{1}(\mathbf{a})$ [3 marks] Write down the likelihood function $L(\theta)$ and show that the maximumlikelihood estimator for θ is

$$
\hat{\theta}=\frac{1}{3 n} \sum_{i=1}^{n} x_{i}
$$

$\mathbf{1}(\mathrm{b})$ [4 marks] Show that $\hat{\theta}$ is unbiased, find its variance, and show that the variance is equal to the minimum variance bound.
$\mathbf{1}$ (c) [2 marks] Make a sketch of the log-likelihood function indicating the estimator $\hat{\theta}$ and indicate on the sketch how to find the standard deviation of $\hat{\theta}$.

For the rest of this question suppose that the sample size n is not fixed but rather follows a Poisson distribution with mean $\alpha \theta^{3}$, where α is a given constant. (Recall that the Poisson distribution for n with mean ν is $P(n ; \nu)=\nu^{n} e^{-\nu} / n!$.)
$\mathbf{1}(\mathbf{d})$ [$\mathbf{4}$ marks] Write down the full (i.e., extended) likelihood function for θ based on the Poisson distributed n and the n values x_{1}, \ldots, x_{n}. Show that the maximum-likelihood estimator for θ is

$$
\hat{\theta}=\left(\frac{1}{3 \alpha} \sum_{i=1}^{n} x_{i}\right)^{1 / 4}
$$

$\mathbf{1}(\mathbf{e})\left[\mathbf{3}\right.$ marks] Show that the expectation value of a function a of n and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ can be written

$$
E[a(n, \mathbf{x})]=E_{n}\left[E_{\mathbf{x}}[a(n, \mathbf{x}) \mid n]\right]
$$

where E_{n} and $E_{\mathbf{x}}$ indicate the expectation values with respect to n and \mathbf{x}, respectively. $\mathbf{1}(\mathbf{f})$ [4 marks] Using the result from (e) and the second derivative of the log-likelihood function, show that the variance of $\hat{\theta}$ can be approximated as

$$
V[\hat{\theta}]=\frac{1}{12 \alpha \theta}
$$

stating any assumptions needed. Using the fact that the expectation value of n is $\alpha \theta^{3}$, compare the variance found here with that found in (b) for fixed n, and comment on why they are different.

2 ([0 marks] - nothing to turn in): This is a warm-up for maximum-likelihood fitting with the minimization program MINUIT, using either its python implementation iminuit or the root/C++ version TMinuit. Please download the code and see if you can get it to run. We will return to this later on.

The programs below generate a data sample of 200 values from a pdf that is a mixture of an exponential and a Gaussian:

$$
\begin{equation*}
f(x ; \theta, \xi)=\theta \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}+(1-\theta) \frac{1}{\xi} e^{-x / \xi}, \tag{1}
\end{equation*}
$$

The pdf is modified so as to be truncated on the interval $0 \leq x \leq x_{\max }$. The program Minuit is used to find the MLEs for the parameters θ and ξ, with the other parameters treated here as fixed. You can think of θ as representing the fraction of signal events in the sample (the Gaussian component), and the parameter ξ characgterizes the shape of the background (exponential) component.

To use python, you will need to install the package iminuit (should just work with "pip install iminuit"). See:

```
https://pypi.org/project/iminuit/
```

Then download and run the program mlFit.py or the jupyter notebook mlFit.ipynb from

```
http://www.pp.rhul.ac.uk/~cowan/stat/python/iminuit/
```

To use C++/ROOT, download the files from

```
http://www.pp.rhul.ac.uk/~ cowan/stat/root/tminuit/
```

to your work directory and build the executable program by typing make and run by typing ./simpleMinuit. This uses the class TMinuit, which is described here:
https://root.cern.ch/doc/master/classTMinuit.html

