Statistical Data Analysis

Problem sheet 8
Due Monday 27 November 2023
Exercise 1: This exercise follows on from Ex. 2 from problem sheet 7 and concerns maximumlikelihood fitting with the minimization program MINUIT, using either its python implementation iminuit or the root/C++ version TMinuit. Please refer to problem sheet 7 for information on how to download the necessary software.

The program given generates a data sample of $n=200$ values from a pdf that is a mixture of an exponential and a Gaussian:

$$
\begin{equation*}
f(x ; \theta, \xi)=\theta \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}+(1-\theta) \frac{1}{\xi} e^{-x / \xi} \tag{1}
\end{equation*}
$$

The pdf is modified so as to be truncated on the interval $0 \leq x \leq x_{\text {max }}$. To use python, start with the program

```
http://www.pp.rhul.ac.uk/~ cowan/stat/python/iminuit/mlFit.py
```

To use $\mathrm{C}++/$ ROOT, use the files from

```
http://www.pp.rhul.ac.uk/~cowan/stat/root/tminuit/
```

$\mathbf{1}(\mathbf{a})$ [$\mathbf{6}$ marks] By default the program mlFit.py fixes the parameters μ and σ, and treats only θ and ξ as free. By running the program, obtain the following plots:

- the fitted pdf with the data;
- a "scan" plot of $-\ln L$ versus θ;
- a contour of $\ln L=\ln L_{\max }-1 / 2$ in the (θ, ξ) plane.

From the graph of $-\ln L$ versus θ, show that the standard deviation of $\hat{\theta}$ is the same as the value printed out by the program.

From the graph of $\ln L=\ln L_{\max }-1 / 2$, show that the distances from the MLEs to the tangent lines to the contour give the same standard deviations $\sigma_{\hat{\theta}}$ and $\sigma_{\hat{\xi}}$ as printed out by the program.
$\mathbf{1}(\mathrm{b})$ [$\mathbf{6}$ marks] Recall that the inverse of the covariance matrix variance of the maximumlikelihood estimators $V_{i j}=\operatorname{cov}\left[\hat{\theta}_{i}, \hat{\theta}_{j}\right]$ can be approximated in the large sample limit by

$$
\begin{equation*}
V_{i j}^{-1}=-E\left[\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right]=-\int \frac{\partial^{2} \ln P(\mathbf{x} \mid \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}} P(\mathbf{x} \mid \boldsymbol{\theta}) d \mathbf{x} \tag{2}
\end{equation*}
$$

where here $\boldsymbol{\theta}$ represents the vector of all of the parameters. Show that $V_{i j}^{-1}$ is proportional to the sample size n and thus show that the standard deviations of the MLEs of all of the parameters decrease as $1 / \sqrt{n}$. (Hint: write down the general form of the likelihood for an i.i.d. sample: $L(\boldsymbol{\theta})=\prod_{i=1}^{n} f\left(x_{i} ; \boldsymbol{\theta}\right)$. There is no need to use the specific $f(x ; \boldsymbol{\theta})$ for this problem.)
(c) [6 marks] By modifying the line
numVal $=200$
rerun the program for a sample size of $n=100,400$ and 800 events, and find in each case the standard deviation of $\hat{\theta}$. Plot (or sketch) $\sigma_{\hat{\theta}}$ versus n for $n=100,200,400,800$ and comment on how this stands in relation to what you expect.
1(d) [6 marks] In python by modifying the line

```
parfix = [False, True, True, False] # change these to fix/free parameters
```

or in C++/Root by using the TMinuit routines FixParameter and Release, find $\hat{\theta}$ and its standard deviation $\sigma_{\hat{\theta}}$ in the following four cases:

- θ free, μ, σ, ξ fixed;
- θ and ξ free, μ, σ fixed;
- θ, ξ and σ free, μ fixed;
- θ, ξ, μ and σ all free.

Comment on how the standard deviation $\sigma_{\hat{\theta}}$ depends on the number of adjustable parameters in the fit.

