
DRAFT 0.3

Glen Cowan
RHUL Physics
15 January, 2012

Asymptotic distribution of the ratio

of two profile likelihoods

1 Introduction

In Ref. [1], distributions for test statistics based on likelihood ratios were given, using ap-
proximations that become exact in the limit of a large data sample. The main results were
given for test statistics based on a ratio of the profile likelihood (defined below) to the max-
imized likelihood. Another type of likelihood ratio, namely, a ratio of two profile likelihoods
corresponding to two hypotheses has also been widely used in HEP searches, especially at
the Tevatron. A special case of such a likelihood ratio was also discussed in Sec. 3.8 of [1],
but it was restricted to the case where the distributions of the corresponding likelihood-ratio
statistic (defined below) was approximately Gaussian. The main purpose of the present note
is to extend the result of [1] to cases where the Gaussian approximation for the test statistic
is not valid. The more general result is needed when the standard deviation of the estimator
of the signal strength depends significantly on the hypothesized signal strength.

Consider a model containing a rate parameter µ as well as nuisance parameters θ =
(θ1, . . . , θm), described by a likelihood function L(µ,θ). The tests of hypothesized parameter
value µ were based on the ratio of the profile to maximized likelihoods:

λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)
. (1)

Here µ̂, and θ̂ are the values of the parameters that maximize the likelihood and
ˆ̂
θ(µ) denotes

the values of the θ that maximize the likelihood for a given value of µ. That is, the numerator
of (1) is the profile likelihood and the denominator is the maximized likelihood.

In this note, we will assume one measures a continuous variable x that follows a Gaussian
distribution with mean µ and standard deviation σµ. This is equivalent to the assumption
that the asymptotic approximations of Wald and Wilks hold, as described in Ref. [1]. There,
the Maximum Likelihood (ML) estimator for µ, µ̂, played the role of the measured quantity
x. We assume that there are two specific hypothesis of interest:

H0 : x ∼ Gauss(µ0, σ0) , (2)

H1 : x ∼ Gauss(µ1, σ1) . (3)

In a search for a new process, H0 typically represents the hypothesis that the data sample
consists entirely of events from known (background) processes, and and H1 is the hypothesis
that includes a sought after signal process.
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Often, for example, the measurement is based on counting a number of events n that are
Poisson distributed with a mean value µs+ b, where s and b represent the expected number
of events from signal and background processes, respectively, and µ is a strength parameter
defined such that µ = 0 gives the background-only hypothesis H0 and µ = 1 corresponds to
the nominal alternative H1. In this case the ML estimator for µ is

µ̂ =
n− b

s
. (4)

Since n is Poisson distributed with mean µs + b, the variance of n is V [n] = µs + b and
therefore the standard deviation of µ̂ is

σµ =

√
µs+ b

s
. (5)

Here we will assume that specification of the hypotheses H0 and H1 provides known values
for the two mean values µ0 and µ1 as well as the standard deviations σ0 and σ1. Here for
illustrative purposes we will take the parameter µ under the two hypotheses H0 and H1 to
be µ0 = 0 and µ1 = 1, with the corresponding standard deviations

σ0 =

√
b

s
, (6)

σ1 =

√
s+ b

s
. (7)

Although this rule for the standard deviations is derived from the assumption of Poisson
distributed data, we nevertheless consider here that the data value x follows a Gaussian
distribution, as would be the case for x = µ̂ given a sufficiently large value for the mean of n.

In more complicated problems with nuisance parameters, one would nevertheless have a
ML estimator µ̂ for a corresponding signal rate parameter µ, and this will have a certain
standard deviation σµ. To apply the procedure here to such analyses, one must obtain the
standard deviation σµ of µ̂ (i.e., what we call here x) by using, for example, the matrix of
second derivatives of the log-likelihood function. The value of σµ will depend in general on
the assumed values of both µ and of any nuisance parameters.

2 Definition of the test statistic q and distribution for σ0 = σ1

We assume that the measurement can be represented by a single Gaussian distributed variable
x with mean µ and standard deviation σµ, so that the likelihood function is

L(µ, σµ) =
1√
2πσµ

e−(x−µ)2/2σ2
µ . (8)

The two hypotheses H0 and H1 defined above thus correspond to two pairs of values for µ
and σµ, namely, (µ0, σ0) and (µ1, σ1).

According to the Neyman-Pearson Lemma (see, e.g., Ref. [2]), when defining a test of a
given size α of H0, to obtain the highest power with respect to the alternative H1 the optimal
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test statistic is given by the likelihood ratio L(µ1, σ1)/L(µ0, σ0). Equivalently we can use a
monotonic function of this and therefore we define the statistic

q = −2 ln
L(µ1, σ1)

L(µ0, σ0)
=

(x− µ1)
2

σ2
1

− (x− µ0)
2

σ2
0

+ 2 ln
σ1
σ0

. (9)

In the special case where the two standard deviations are the same, i.e., σ0 = σ1 ≡ σ,
Eq. (9) becomes

q =
µ2
1 − µ2

0 − 2(µ1 − µ0)x

σ2
. (10)

The statistic q is thus a linear function of x and therefore also follows a Gaussian distribution
with expectation value and variance given by

E[q|µ, σµ] =
µ2
1 − µ2

0 − 2(µ1 − µ0)µ

σ2
, (11)

V [q|µ, σµ] =
4(µ1 − µ0)

2σ2
µ

σ4
. (12)

These results were given in Eqs. (73) and (74) of Ref. [1] for the special cases of σµ = σ,
µ0 = 0 and µ1 = µ. The purpose of the present note is to extend this result to the case where
σ0 and σ1 are not equal, in which case the resulting distribution for q is no longer Gaussian.

3 Distribution of q for σ0 6= σ1

In this section we treat the case of σ0 6= σ1. Suppose σ1 > σ0, as is the case if their values are
assigned according to Eqs. (6) and (7). The dependence of q on x given by Eq. (9) is shown
in Fig. 1. It is a parabola with a maximum (or minimum, if σ0 > σ1) that occurs at

xm =
µ0σ

2
1 − µ1σ

2
0

σ2
1 − σ2

0

, (13)

and at this point, q takes on the value

qm =
(µ1 − µ0)

2

σ2
1 − σ2

0

+ 2 ln
σ1
σ0

. (14)

To find the distribution of q, we first solve for x in terms of q. The quadratic relation (9)
has two solutions, x+ and x−, given by

x± = xm ±
√

2(q − qm)

q′′
(15)

where

q′′ =
2

σ2
1

− 2

σ2
0

(16)
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Figure 1: The test statistic q as a func-
tion of the measured variable x. The curve
has been computed using µ0 = 0, µ1 = 1,
σ0 = 0.632 and σ1 = 0.775, which result
from Eqs. (6) and (7) using s = 5 and
b = 10.

is the second derivative of q with respect to x. As x is Gaussian distributed with mean µ and
standard deviation σµ, the distribution of q is given by

f(q|µ, σµ) =
∣

∣

∣

∣

dx+
dq

∣

∣

∣

∣

1

σµ
ϕ

(

x+(q)− µ

σµ

)

+

∣

∣

∣

∣

dx−
dq

∣

∣

∣

∣

1

σµ
ϕ

(

x−(q)− µ

σµ

)

, (17)

where the function ϕ is the standard Gaussian pdf (zero mean and unit variance), x+ and
x− are given by Eq. (15), and the derivatives of x with respect to q for the two solutions x+
and x− are

dx±
dq

= ± 1
√

2(q − qm)q′′
= ±σ0σ1

2

1
√

(σ2
0 − σ2

1)(q − qm)
. (18)

Putting together the ingredients and writing the Gaussian terms explicitly gives

f(q|µ, σµ) =
1

√

2(q − qm)q′′
1√
2πσµ

{

exp

[

−(xm +
√

(2/q′′)(q − qm)− µ)2

2σ2
µ

]

+ exp

[

−(xm −
√

(2/q′′)(q − qm)− µ)2

2σ2
µ

]}

(19)

for q < qm and zero otherwise. Distributions of q according to Eq. (19) are shown in Figs. 2
for µ0 = 0, µ1 = 1, and with values of σ0 and σ1 computed using Eqs. (6) and (7) based on
the values of s and b shown.

4 Cumulative distribution of q

To compute the p-value of a hypothesized value of µ, one requires the cumulative distribution

F (q|µ, σµ) =
∫ q

−∞

f(q′|µ, σµ) dq′ (20)

Because of the parabolic shape of the function q(x), the probability to find q less than a given
value is equal to one minus the probability to find x between the corresponding values of x−
and x+, i.e.,
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Figure 2: Distributions of q given values of µ = 0 and µ = 1 using values of σ0 and σ1 based on the
values of s and b shown. These give σ0 = 0.632 and σ1 = 0.775 for (a) and σ0 = 0.5 and σ1 = 0.548
for (b).

F (q|µ, σµ) = 1− P (x− < x < x+) = 1− Φ

(

x+ − µ

σµ

)

+Φ

(

x− − µ

σµ

)

, (21)

where x+ and x− are given by Eq. (15) and Φ is the cumulative distribution of the standard
Gaussian.

If one has µ1 > µ0, as used in the examples here, then the p-value of H0 (i.e., µ0, σ0) is
the probability, assuming H0, to find q less than or equal to what one observed, i.e.,

p0 = F (q|µ0, σ0) . (22)

In a similar way, the p-value of the H1 hypothesis is then the probability, assuming H1, to
find q greater than or equal to the value observed,

p1 = 1− F (q|µ1, σ1) . (23)
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