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Vague outline

Glen Cowan

I. Nuisance parameters and systematic uncertainty

II. Parameter measurement
Frequentist
Bayesian

III. Estimating intervals (setting limits)
Frequentist
Bayesian

IV. Comment on the D0 result on Bs mixing

V. Conclusions
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Statistical vs. systematic errors 

Glen Cowan

Statistical errors:  

How much would the result fluctuate upon repetition 
of the measurement?

Implies some set of assumptions to define 
probability of outcome of the measurement.

Systematic errors:

What is the uncertainty in my result due to 
uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;
modelling of measurement apparatus.

The sources of error do not vary upon repetition of the 
measurement.  Often result from uncertain
value of, e.g., calibration constants, efficiencies, etc.
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Systematic errors and nuisance parameters

Glen Cowan

Response of measurement apparatus is never modelled perfectly:

RHUL HEP seminar, 22 March, 2006
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Model can be made to approximate better the truth by including
more free parameters.

systematic uncertainty ↔ nuisance parameters
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Nuisance parameters 

Glen Cowan

Suppose the outcome of the experiment is some set of 
data values x (here shorthand for e.g. x1, ..., xn).

We want to determine a parameter  
(could be a vector of parameters 1, ...,  n).

The probability law for the data x depends on  :

L(x| )          (the likelihood function)

E.g. maximize L to find estimator

Now suppose, however, that the vector of parameters: 
contains some that are of interest, 
and others that are not of interest:
Symbolically:  

The                      are called nuisance parameters.  
RHUL HEP seminar, 22 March, 2006
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Example #1:  fitting a straight line

Glen Cowan

Data:

Model:  measured yi independent, Gaussian:

assume xi and i known.

Goal:  estimate 0 

(don’t care about 1).
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Case #1:  1 known a priori

Glen Cowan

For Gaussian yi, ML same as LS

Minimize 2 → estimator

Come up one unit from     

to find 
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Correlation between

             causes errors

to increase.

Standard deviations from

tangent lines to contour

Case #2:  both 0 and 1 unknown
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The information on 1

improves accuracy of

Case #3: we have a measurement t1 of 1

RHUL HEP seminar, 22 March, 2006
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The ‘tangent plane’ method is a special case of using the

profile likelihood:   

The profile likelihood

is found by maximizing L (0, 1) for each 0.

Equivalently use 

The interval obtained from                                    is the same as 

what is obtained from the tangents to

Well known in HEP as the ‘MINOS’ method in MINUIT.

Profile likelihood is one of several ‘pseudo-likelihoods’ used
in problems with nuisance parameters.  See e.g. talk by Rolke
at PHYSTAT05.
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The Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value .

        Interpret probability of  as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ (), this reflects degree 
of belief about  before doing the experiment.

        Our experiment has data x, → likelihood function L(x|).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf  p(|x) contains all our knowledge about .
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Case #4:  Bayesian method

We need to associate prior probabilities with 0 and 1, e.g.,

Putting this into Bayes’ theorem gives:

posterior    Q                  likelihood                prior

← based on previous 
     measurement

reflects ‘prior ignorance’, in any
case much broader than
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Bayesian method (continued)

Ability to marginalize over nuisance parameters is an important
feature of Bayesian statistics.

We then integrate (marginalize)  p(0, 1 | x) to find p(0 | x):

In this example we can do the integral (rare).  We find

RHUL HEP seminar, 22 March, 2006
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Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than √n .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate

RHUL HEP seminar, 22 March, 2006
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  

if not, only take the step with probability 

If proposed step rejected, hop in place.
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Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try it again with 10 times 
more points.

RHUL HEP seminar, 22 March, 2006
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Glen Cowan

Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.

RHUL HEP seminar, 22 March, 2006
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Case #5:  Bayesian method with vague prior

Suppose we don’t have a previous measurement of 1 but
rather some vague information, e.g., a theorist tells us:

1 ≥ 0 (essentially certain);

1 should have order of magnitude less than 0.1 ‘or so’.  

Under pressure, the theorist sketches the following prior:

From this we will obtain posterior probabilities for 0 (next slide).

We do not need to get the theorist to ‘commit’ to this prior;
final result has ‘if-then’ character.

RHUL HEP seminar, 22 March, 2006
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Sensitivity to prior

Vary () to explore how extreme your prior beliefs would have 
to be to justify various conclusions (sensitivity analysis).

Try exponential with different
mean values...

Try different functional forms...
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Example #2:  Poisson data with background

Count n events, e.g., in fixed time or integrated luminosity.

s = expected number of signal events

b = expected number of background events

n ~ Poisson(s+b):

Sometimes b known, other times it is in some way uncertain.

Goal:  measure or place limits on s, taking into 
consideration the uncertainty in b.

Widely discussed in HEP community, see e.g. proceedings of
PHYSTAT meetings, Durham, Fermilab, CERN workshops...
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Setting limits
Frequentist intervals (limits) for a parameter s can be found by 
defining a test of the hypothesized value s (do this for all s): 

Specify values of the data n that are ‘disfavoured’ by s 
(critical region) such that P(n in critical region) ≤  
for a prespecified , e.g., 0.05 or 0.1.

(Because of discrete data, need inequality here.)

If n is observed in the critical region, reject the value s.

Now invert the test to define a confidence interval as:

set of s values that would not be rejected in a test of
size  (confidence level is 1  ).

The interval will cover the true value of s with probability ≥ 1 .

Equivalent to Neyman confidence belt construction.
RHUL HEP seminar, 22 March, 2006
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Setting limits:  ‘classical method’
E.g. for upper limit on s, take critical region to be low values of n, 
limit sup  at confidence level 1  thus found from

Similarly for lower limit at confidence level 1 ,  

Sometimes choose    →  central confidence interval.

RHUL HEP seminar, 22 March, 2006
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Likelihood ratio limits (Feldman-Cousins)
Define likelihood ratio for hypothesized parameter value s:

Here       is the ML estimator, note 

       Critical region defined by low values of likelihood ratio.

Resulting intervals can be one- or two-sided (depending on n).

       (Re)discovered for HEP by Feldman and Cousins, 
       Phys. Rev. D 57 (1998) 3873.
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Nuisance parameters and  limits
In general we don’t know the background b perfectly.

Suppose we have a measurement 
of b,   e.g.,  bmeas ~ N (b, b)

So the data are really: n events 
and the value bmeas. 

In principle the confidence interval 
recipe can be generalized to two 
measurements and two parameters. 

Difficult and rarely attempted, but see
e.g. talk by G. Punzi at PHYSTAT05.

G. Punzi, PHYSTAT05
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Bayesian limits with uncertainty on b
Uncertainty on b goes into the prior, e.g.,

Put this into Bayes’ theorem,

Marginalize over b, then use p(s|n) to find intervals for s
with any desired probability content.

Controversial part here is prior for signal s(s) 
(treatment of nuisance parameters is easy).

RHUL HEP seminar, 22 March, 2006
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Cousins-Highland method 

Regard b as ‘random’, characterized by pdf (b).

Makes sense in Bayesian approach, but in frequentist 
model b is constant (although unknown).

A measurement bmeas is random but this is not the mean
number of background events, rather, b is.

Compute anyway

This would be the probability for n if Nature were to generate
a new value of b upon repetition of the experiment with b(b).

Now e.g. use this P(n;s) in the classical recipe for upper limit
at CL = 1 :

Result has hybrid Bayesian/frequentist character.

RHUL HEP seminar, 22 March, 2006
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‘Integrated likelihoods’ 

Consider again signal s and background b, suppose we have
uncertainty in b characterized by a prior pdf b(b).

Define integrated likelihood as
also called modified profile likelihood, in any case not
a real likelihood.

Now use this to construct likelihood ratio test and invert
to obtain confidence intervals.

Feldman-Cousins  & Cousins-Highland (FHC2), see e.g.
J. Conrad et al., Phys. Rev. D67 (2003) 012002 and 
Conrad/Tegenfeldt PHYSTAT05 talk.

Calculators available (Conrad, Tegenfeldt, Barlow).
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Interval from inverting profile LR test 

Suppose we have a measurement bmeas of b.

Build the likelihood ratio test with  profile likelihood:

and use this to construct confidence intervals.

See PHYSTAT05 talks by Cranmer, Feldman, Cousins, Reid.
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Comment on Bs mixing from D0

Glen Cowan

Last week D0 announced the discovery of Bs mixing:
        Moriond talk by Brendan Casey, also hep-ex/0603029

RHUL HEP seminar, 22 March, 2006

Produce a Bq meson at time t=0; there is a time dependent
probability for it to decay as an anti-Bq (q = d or s):

|Vts|À |Vtd| and so Bs oscillates quickly compared to decay rate
Sought but not seen at LEP; 
early on predicted to be visible at Tevatron

Here are some of Casey’s slides with commentary...
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Confidence interval from likelihood function 

In the large sample limit it can be shown for ML estimators:

defines a hyper-ellipsoidal confidence region,

If then

(n-dimensional Gaussian, covariance V)

RHUL HEP seminar, 22 March, 2006
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Approximate confidence regions from L() 
So the recipe to find the confidence region with CL = 1  is:

For finite samples, these are approximate confidence regions.

Coverage probability not guaranteed to be equal to ;

no simple theorem to say by how far off it will be (use MC).

Remember here the interval is random, not the parameter.

RHUL HEP seminar, 22 March, 2006
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Upper limit from test of hypothesized ms 

Base test on likelihood ratio (here  = ms):

Observed value is lobs , sampling distribution is g(l;)  (from MC)

is excluded at CL=1  if

D0 shows the distribution of ln l for ms = 25 ps-1

equivalent to 
2.1 effect

95% CL 
upper limit

RHUL HEP seminar, 22 March, 2006
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Wrapping up

Glen Cowan

I’ve shown a few ways of treating nuisance parameters in
two examples (fitting line, Poisson mean with background).

No guarantee this will bear any relation to the problem you
need to solve... 

At recent PHYSTAT meetings the statisticians have encouraged 
physicists to:

learn Bayesian methods,

don’t get too fixated on coverage,

try to see statistics as a ‘way of thinking’ rather than
a collection of recipes.

I tend to prefer the Bayesian methods for systematics but
still a very open area of discussion.
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