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Outline

Quick overview of physics at the Large Hadron Collider (LHC)

New multivariate methods for event selection
Decision trees
Support Vector Machines

Some applications of Bayesian methods

Outlook for data analysis at the LHC
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Data analysis at the LHC

The LHC experiments are expensive
~ $10" (accelerator and experiments)

the competition 1s intense
(ATLAS vs. CMS) vs. Tevatron

and the stakes are high:

4 sigma effect ~—

s sigma effect

So there is a strong motivation to extract all possible information
from the data.
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Detectors at 4 pp collision points:
ATLAS &

Glen Cowan

The Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

CMS 4 general purpose

LHCb (b physics)
ALICE (heavy 1on physics)
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The ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

2100 physicists
37 countries
167 universities/labs

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter
46 m length

7000 tonnes
~10°® electronic channels
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The Standard Model of particle physics

Matter... + gauge bosons...
photon (y), W*, Z, gluon (g)
+ relativity + quantum mechanics + symmetries... = Standard Model

25 free parameters (masses, coupling strengths,...).
Includes Higgs boson (not yet seen).

Almost certainly incomplete (e.g. no gravity).
Agrees with all experimental observations so far.

Many candidate extensions to SM (supersymmetry, extra dimensions,...)
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A stmulated SUSY event in ATLAS

high p_jets

of hadrons

missing transverse energy
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Background events

ATLAS aAtlantis Event: myFilesZ_8.4.0_3026_799%02

This event from Standard
Model ttbar production also
has high p_jets and muons,

and some missing transverse
energy.

— can easily mimic a SUSY event.
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[LHC data

At LHC, ~10’ pp collision events per second, mostly uninteresting

do quick sifting, record ~200 events/sec

single event ~ 1 Mbyte

1 “year” = 10" s, 10" pp collisions / year

2 x 10° events recorded / year (~2 Pbyte / year)

For new/rare processes, rates at LHC can be vanishingly small
e.g. Higgs bosons detectable per year could be ~10°
— 'needle in a haystack'

For Standard Model and (many) non-SM processes we can generate
simulated data with Monte Carlo programs (including simulation
of the detector).
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A simulated event

Event listing {summary) PYTHIA MOnte CarlO

particles jet kS kF orig p_x F_Y p_z 1 . 1 .
Iptl 21 2212 0,000 0,000 7000, Q00 7000, 000 0,938 pp g ulno_g ulno
lp+l 21 2212 0, Q00 0L QOO=FO00 Q00 FO00 , Q0 n,.938

Ig! 21 il 0,863  -0,323 1739,862 1739,862 s
lubar il -2 -0,621  -0,163 777,410 FFY 410 %"

21 21 =2.427 b,486 1487,857 1487 ,8E9 297 pi+ 0, D0E 0,398 308,795 308,297

21 21 -B2,310  B3,357 463,274 471,793
* * * * 3238 gamma 0,407 0,087-1635, 453 1695, 458
21 1000021 214,363 Gbd4,843 493,897 979,192 299 Qamma 0,113 0,029 -314,822 314, 0800

21 1000021 -379,700 -476,000 G25,GB6 980,477 : _

211000024 130,058 112,247 129,860 263,141 jgf EE;E% g:ggﬁ _3;$§§ %gﬁ;;?g 133;;?3

21 -3 253,400 187,468 82,100 Z20.BE4Y  4np fnig) 0,267 -0,052 -144,672 144,674

21 4 —73.403 242,403 283,026 3ELO0LGH 442 Sanng -1.581 o 473 3 306 447
Ichi_201 21 1000023 -326,241 80,971 113,712 385,930 . SOLC 1494 5143 2081 4.018
Ikl 21 5 -561.841 234,077 383,853 431.038) 4op i 0007 0.738  4.005 4085
Ibbar! 21 -5 -0,597 -99,577 21,233 101944 ,or . 0074 0.99%  0.486 0535
I“chi_101 21 1000022 103,352 81316 83,457 175,000 407 pu 4390 -1 417 -1.793  4.968
I=1 21 E] 5,451 38,374 52,302 BS.A000 4an oo 1187 -0.894  -0.17E  1.500
lchar| 21 -4 20,833 -7.240o 5,938 22,899 409 (pif) 0+ 955 _0+459 -0 +590 1\‘221
“chi_101 21 1000022 -136.266 -72,961  G3.246 18L.34| g5 (pig) 2249 -1 105 -1.181 .85
Frwi_mu ! 21 14 -T2EE 24,707 21,713 84,3100 44y {Kharo) 1+ dd1 _g+24? -0 +4?2 1+515
In_mubar! 21 -14 -l07,801 16,301 38,226 115.B20) 490 pi- 2:232 _0:400 —0:249 2:285

413 k+ 1,380 -0,B52  -0.361 1.644

ganma 1w 2,63 1,357 0,125 2,967 . _
(“chi_1-)  11-1000024 129647 112440 129820 262,993 i1e Eﬁigéj R X

[ "chi_200 11 1000023 -322,330  -80,817 113,191 352,444 +

“chi_10 1 1000022 97,344 77,819 80,5917 169,004 j}? ﬁi_ g+§g§ 3+§2§ _g+§§§ E‘EEE
“chi_10 1 1000022 -136,266 -72,961 53,245 18L.914 | 1o rhaen 1,335 1841 2078 ZA11
fd_mel 1 14 _?B+253 —24+?5? 21+?15 E4+510 419 {Piﬂ} 0+BSE 1+045 1+311 1+9ﬂ8
n_mubar 1 -14 -107,801 16,301 28,226 115,620 420 pi+ 0+21? 1+40? 1+355 1+9?1
(Delta++) 11 2224 0,222 0,012-2734, 287 2734 ,287 471 (Piﬂ} 1:20? 2:335 2:?5? 3:820

422 i 3,475 h,324 5,702 8,092
423 pi- 1,856 2,606 2,808 4,259
424 gamma -0,012 0,247 0,421 0,489
425 gamma 0,025 0,034 0,009 0,043
426 pi+ 2,718 b,229 B, 403 8,703
427 (pil) 4,109 B, 747 7.597 10,981
428 pi- 0,551 1,233 1,945 2,372
429 (pin) 0,645 1,141 0,922 1,608
430 gamma -0,383 1,169 1,208 1,724
431 gamma -0, 201 0,070 0, (G0 0,221

[y
[

[y

=
I e o e el =
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Multivariate event selection

Suppose for each event we measure a set of numbers X=(x e xn)
X =Jetp.
X, = missing energy

x, = particle 1.d. measure, ...

x follows some n-dimensional joint probability density, which

~N

depends on the type of event produced, i.e., was it pp—tt, pp—§4a,...

p(X|H,) N

XJ' I ‘ “,“;“:‘;} ‘,;‘ g / E.g. hypotheses (class labels) H.,H,
., % ,;‘i“‘ ‘ Often simply “signal”, “background”
. ,:33}4. ‘1:‘ We want to separate (classify) the
4 . ~ event types 1n a way that exploits the
D (5(»‘ Ho) X; information carried in many variables.

Glen Cowan Statistical Methods for LHC Physics
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Finding an optimal decision boundary

Maybe select events with “cuts’:

X <C.
i i

X <C
J J

Goal of multivariate analysis 1s to do this 1n an “optimal” way.
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Test statistics

The decision boundary 1s a surface in the n-dimensional space of

input variables, e.g., y(X)=const.

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the

maximum possible separation between the event types:

2 T | |
The decision boundary Yout
: : : accept H, ..i= reject H,
1s now effectively a single 15 -
cut on y(x), dividing
. 1 F |I 7
X-space 1nto two H o\ )
regions: f(y| O)DI S L~ l.'l ,ﬁ"/ \‘x L f (y ‘H 1)
| / \
R (accept H ) ,.I'l \% \
0 A Tl B =
0 1 2 3 4 5

R1 (reject HO) "
13
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest background
rejection for a given signal efficiency (highest power for a given
significance level), choose the acceptance region for signal such that

p(X[s)
p(X|b)

where ¢ 1s a constant that determines the signal efficiency.

>C

Equivalently, the optimal discriminating function is given by the
likelihood ratio: >
(%)= p(X[s)
y (2 b
p(Xb)

N.B. any monotonic function of this 1s just as good.

Glen Cowan Statistical Methods for LHC Physics
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Neyman-Pearson doesn't always help

The problem is that we usually don't have explicit formulae for the pdfs

p(xls), p(xlb), so for a given x we can't evaluate the likelihood ratio.

Instead we have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”

L X_'NS ,~ events of known type

b) — > X ...,X*Nb

Naive try: enter each (s,b) event into an n-dimensional histogram,
use e.g. M bins for each of the n dimensions, total of M" cells.

generate y~ P(

<
w
>

generate y~ P(

<!

n 1s potentially large — prohibitively large number of cells to populate,
can't generate enough training data.
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General considerations

In all multivariate analyses we must consider e.g.

Choice of variables to use

Functional form of decision boundary (type of classifier)
Computational issues

Trade-off between sensitivity and complexity

Trade-off between statistical and systematic uncertainty

Our choices can depend on goals of the analysis, e.g.,

Event selection for further study
Searches for new event types

Glen Cowan Statistical Methods for LHC Physics
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Decision boundary tlexibility

The decision boundary will be defined by some free parameters that
we adjust using training data (of known type) to achieve the best
separation between the event types.

Goal 1s to determine the boundary using a finite amount of training data
SO as to best separate between the event types for an unseen data sample.

overtraining  boundary too rigid good trade-off
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Some “standard” multivariate methods

Place cuts on individual variables
Simple, intuitive, in general not optimal

Linear discriminant (e.g. Fisher)
Simple, optimal if the event types are Gaussian distributed with
equal covariance, otherwise not optimal.

Probability Density Estimation based methods
Try to estimate p(xls), p(xIb) then use y(x)=p(x|s)/p(x|b).

In principle best, difficult to estimate p(x) for high dimension.

Neural networks
Can produce arbitrary decision boundary (in principle optimal),
but can be difficult to train, result non-intuitive.

Glen Cowan Statistical Methods for LHC Physics
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Decision trees

In a decision tree repeated cuts are made on a single variable
until some stop criterion is reached.

The decision as to which variable is used 1s
based on best achieved improvement

in signal purity:

Zsignal Wi

W+ W,
Zsignal l background !

where w.. 1s the weight of the ith event.

P=

7/1 2/9

Iterate until stop criterion reached,

based e.g. on purity and minimum o .
Example by MiniBooNE experiment,

number of events in a node. B. Roe et al., NIM 543 (2005) 577
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Decision trees (2)

The terminal nodes (leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if xesignalregion,— 1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that 1s more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classitier.
Suppose we have a training sample 7' consisting of N events with

X ... X~ event data vectors (each x multivariate)

Ypeeen Y, truC class labels, +1 for signal, —1 for background
W, W event weights

1
Now define a rule to create from this an ensemble of training samples

T g T 3 e s derive a classifier from each and average them.
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AdaBoost

A successful boosting algorithm 1s AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7' using the original

X ... X~ event data vectors

Ve ¥, lIUE class labels (+1 or -1)

(D
e

(1)

W s W event weights

N

with the weights equal and normalized such that Z ng) =1.
i=1
Train the classifier f (x) (e.g. a decision tree) using the weights w'"

so as to minimize the classification error rate,

ZW (y:f1(x;)<0),

where I(X) = 1 if X 1s true and 1s zero otherwise.

Glen Cowan Statistical Methods for LHC Physics
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Updating the event weights (AdaBoost)

Assign a score to the kth classifier based on its error rate:

1-¢
&, =In—*
C

Define the training sample for step k+1 from that of k£ by updating
the event weights according to

" " e_o‘kfk(xi)yi/z
/ /Z k¥ Normalize so that
i =eventindex  k = training sample index Z wkr =1
Iterate K times, final classifier is f Z e f (X T

Glen Cowan Statistical Methods for LHC Physics 23



BDT example from MiniBooNE

~200 1nput variables for each event (v interaction producing e, |l or T).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

l | I | | I | | | | | | | | | I | | | |

1 _: o un-weighted musclassified event rate i

0.8 _: a weighted misclassified event rate, err_ E

_ ] x o,= B*In((1-err_)/err ). !3_=D.j _

5 064 : C Ll Lt
B ]
04 4
0.2 —:

E:I _I | ] | I ] | | | | | | | | | ] | | | |
0 200 400 GO0 800 1000

Number of Tree [terations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

o Training MC Samples . V5.  Testing MC Samples
From MiniBooNE _ .

30000 E I\:]:tree =1 P?—Itree =1
example 20000 : 1000 i
10000 — " |] 500 — '. Il
O _2 1 1 T 1 E 1 T 1 1 I}I 1 T T 1 ]I. 1 1 1 1 2 I:I ? T 1 T 1 ? T T 1 1 Il-l 1 1 T 1 ]I. T 1 1 1 )
black = background N =100 10000
2000 - tree - 8000 —
— Q1 1 it 6000 3 o
red - Slgnal 1000 — z H 4000 s
1 /7 > 2000 3 !
0 1 I-rl 1 I 1 1 1 T I-.'IL T T T I T 1 1 1 D = T |I -I 1
w00 22 10 0 10 20 2
] N oo = 900 10000
2000 — 7500
1000 & Y 5000 —
] i 2500
i N L |
0 -.II | T T T II T T T I I:I 2
— 20 0 20
TN, - 1000 00 -
S e 6000
1000 - i 4000
:-?OO ] .-_I-' :-I EOOD _: .
G -I-I 1 1 I 1 1 |lII I T T T I T D - 1 1 1 1 T T T T T T
40 20 0 20 40 20 0 20
Boosting Outputs Boosting Outputs
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Boosted decision tree summary

Advantage of boosted decision tree is it can handle a large number
of inputs. Those that provide little/no separation are rarely used as tree
splitters are effectively ignored.

Easy to deal with inputs of mixed types (real, integer, categorical...).

If a tree has only a few leaves it 1s easy to visualize (but rarely use only a
single tree).

There are a number of boosting algorithms, which differ primarily in the
rule for updating the weights (e-Boost, LogitBoost,...)

Other ways of combining weaker classifiers: Bagging (Boostrap-
Aggregating), generates the ensemble of classifiers by random sampling
with replacement from the full training sample.
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Support Vector Machines

Support Vector Machines (SVMs) are an example of a kernel-based
classifier, which exploits a nonlinear mapping of the input variables
onto a higher dimensional feature space.

The SVM finds a linear decision boundary in the higher dimensional space.

But thanks to the “kernel trick” one does not every have to write down
explicitly the feature space transformation.

Some references for kernel methods and SVMs:

The books mentioned on Monday

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
research.microsoft.com/~cburges/papers/SVMTutorial.pdf

N. Cristianini and J.Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.
The TMVA manual (!)
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[Linear SVMs

Consider a training data set consisting of

X,...xX  event data vectors
Y»-ees ¥, true class labels (+1 or —1)

Suppose the classes can be separated by a hyperplane defined by
a normal vector w and scalar offset b (the “bias”): y (X) =X'W -I—b

X;w+h>+1 for all y = +1

Xi°W-|'b<—1 forall y =-1

or equivalently

yi(Xi°W-|-b)—1 >0 forall i
Bishop Ch. 7
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Margin and support vectors

The distance between the hyperplanes defined by y(x) =+1 and y(x) = -1
1s called the margin, which 1s:

If the training data are perfectly separated then this means there are
no points inside the margin.

Suppose there are points on the margin (this 1s equivalent to defining

the scale of w). These points are called support vectors.
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LLinear SVM classifier

We can define the classifier using
f(x)=sign(x-w+b)

which 1s +1 for points on one side of the hyperplane and —1 on the other.

The best classifier should have a large margin, so to maximize

we can minimize H WH2 subject to the constraints

Vi X:W+Db)=120 foralli

Glen Cowan Statistical Methods for LHC Physics
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Lagrangian formulation

This constrained minimization problem can be reformulated using
a Lagrangian

1 N
L= Wi =Yty (x:w-+b)-1)
1=1

\

positive Lagrange multipliers o,

l

We need to minimize L with respect to w and b and maximize

with respect to o..

There 1s an o, for every training point. Those that lie on the margin
(the support vectors) have o> 0, all others have o = 0. The solution

can be written (sum only contains

W:Z oY X,
l

Glen Cowan Statistical Methods for LHC Physics 31
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Dual formulation

The classifier function 1s thus

f(x)=sign(x-w+b)=sign| ) «y,Xx-X,+b

It can be shown that one finds the same solution a by minimizing
the dual Lagrangian

1
LD:Z O(i_E Z oGO Y Y X X
1 i,]

So this means that both the classifier function and the Lagrangian
only involve dot products of vectors in the input variable space.

Glen Cowan Statistical Methods for LHC Physics
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Nonseparable data

If the training data points cannot be separated by a hyperplane,
one can redefine the constraints by adding slack variables ﬁi:

Yi(X;w+D)+&~1>0with >0 forall

Thus the training point x_ 1s allowed to

be up to a distance &i on the wrong side
of the boundary, and ﬁi = () at or on the

right side of the boundary.

For an error to occur we have fi > 1, s0
2
i

1s an upper bound on the number of training errors.

Glen Cowan Statistical Methods for LHC Physics
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Cost function for nonseparable case

To limit the magnitudes of the E«q we can define the error function that

we minimize to determine w to be
1 k
Elwi=glwl*+c[Ze)
l

where C 1s a cost parameter we must choose that limits the amount
of misclassification. It turns out that for k=1 or 2 this 1s a quadratic

programming problem and furthermore for k=1 it corresponds to

minimizing the same dual Lagrangian
1
Ly= Z O(i_E Z oGO Y Y i X X
1 i,]

where the constraints on the & become 0< o(l.< C.

Glen Cowan Statistical Methods for LHC Physics
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Nonlinear SVM

So far we have only reformulated a way to determine a linear
classifier, which we know is useful only in limited circumstances.

But the important extension to nonlinear classifiers comes from first
transforming the input variables to feature space:

-

O X)=(@(X),..., Pp X))

These will behave just as our new “input variables”. Everything
about the mathematical formulation of the SVM will look the same

as before except with @(x) appearing in the place of x.

Glen Cowan Statistical Methods for LHC Physics
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Only dot products

Recall the SVM problem was formulated entirely in terms of dot
products of the input variables, e.g., the classifier is

Zo‘iyix’xi+b)

so 1n the feature space this becomes

Za,-yi<7)<x>-<7)<xi>+b)

f(x)=sign

f(x)=sign

Glen Cowan Statistical Methods for LHC Physics
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The Kernel trick

How do the dot products help? It turns on that a broad class of
kernel functions can be written in the form:

- -

K(x,x')=p(x)-@(x')

Functions having this property must satisfy Mercer's condition

[ K(x,x")g(x)g(x")dxdx'=0

for any function g where f g (x)d x is finite.

So we don't even need to find explicitly the feature space transformation

d(x), we only need a kernel.

Glen Cowan Statistical Methods for LHC Physics
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Finding kernels

There are a number of techniques for finding kernels, e.g., constructing
new ones from known ones according to certain rules (cf. Bishop Ch 6).

Frequently used kernels to construct classifiers are e.g.

K(X,X')Z(X-X'-I—Q)p polynomial

x|

Noa

Gaussian

K(x,x')=exp

K(x,x')=tanh(k(x-x')+0)  sigmoidal
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Using an SVM

To use an SVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the ¢ of the Gaussian)
the cost parameter C (plays role of regularization parameter)

The training 1s relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.
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SVM in HEP

SVMs are very popular in the Machine Learning community but have
yet to find wide application in HEP. Here is an early example from
a CDF top quark anlaysis (A. Vaiciulis, contribution to PHYSTATO02).

1 T : L : it v
: | | Tl
signal o= T
I T VRN >
eff 0.8 ?."_.,r n-

it § ™
(YIRS 1S SR SRS——

U4—f#‘ &SVM |
. —cuts

0.4 06 0.8 1
background eff.
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Multivariate analysis discussion
For all methods, need to check:

Sensitivity to statistically unimportant variables
(best to drop those that don’t provide discrimination);

Level of smoothness 1n decision boundary (sensitivity
to over-tramning)

Given the test variable, next step 1s e.g., select # events and
estimate a cross section of signal: s = (n —b)/esL

Now need to estimate systematic error...

[f e.g. training (MC) data = Nature, test variable 1s not optimal,
but not necessarily biased.

But our estimates of background » and efficiencies would then
be biased if based on MC. (True also for ‘simple cuts’.)
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Multivariate analysis discussion (2)

But 1n a cut-based analysis it may be easier to avoid regions
where untested features of MC are strongly influencing the
decision boundary.

Look at control samples to test joint distributions of inputs.
Try to estimate backgrounds directly from the data (sidebands).
The purpose of the statistical test 1s often to select objects for
further study and then measure their properties.

Need to avoid mput variables that are correlated with the
properties of the selected objects that you want to study.
(Not always easy; correlations may be poorly known.)

Glen Cowan Statistical Methods for LHC Physics
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Software for multivariate analysis

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, I. Narsky, physics/0507143

Further info from www. hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported

Glen Cowan Statistical Methods for LHC Physics
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Comparing multivariate methods (TMVA)

Background rejection versus Signal efficiency TMVA
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3

___MUA Methnd

MR-

...... | PDERS
—— BDT.

Background rejection

— Rulefit - S\

L|kal|hn0dD T W TN Y
LkenhmdPGA

0.2 | SRR NS SR D\, Y, .
Fisher :

0.1 -§--HMatr1x

0 T R PN SUUE SUTEE SN SUTEE SN ST

0 014 02 03 04 05 06 07 08 09 1

Signal efficlency

Choose the best one!
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Bayesian vs. frequentist methods

Two schools of statistics use different interpretations of probability:

I. Relative frequency (frequentist statistics):

P(A) — Iim times outcome is A

n—00 n,

II. Subjective probability (Bayesian statistics):

P(A) = degree of belief that A is true

In particle physics frequency interpretation most used, but subjective
probability can be more natural for non-repeatable phenomena:

systematic uncertainties, probability that Higgs boson exists...

Glen Cowan Statistical Methods for LHC Physics
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Frequentist Statistics — general philosophy
In frequentist statistics, probabilities are associated only with
the data, 1.e., outcomes of repeatable observations.
Probability = limiting frequency
Probabilities such as
P (Higgs boson exists),
P0.117<ea, <0.121),
etc. are etther O or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.
The preferred theories (models, hypotheses, ...) are those for
which our observations would be considered ‘usual’.

Glen Cowan Statistical Methods for LHC Physics
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Bayesian Statistics — general philosophy

In Bayesian statistics, iterpretation of probability extended to
degree of beliet (subjective probability). Use this for hypotheses:

probability of the data assuming _ S
hypothesis H (the likelithood) N / prior probability, 1.e.,

before seeing the data

P(x|H)r(H
b = PG
7 [P(Z|H)m(H)dH

posterior probability, 1.e., \ normalization involves sum
after seeing the data over all possible hypotheses
Bayesian methods can provide more natural treatment of non-
repeatable phenomena:

systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes’ thm.)

Glen Cowan Statistical Methods for LHC Physics
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Statistical vs. systematic errors
Statistical errors:
How much would the result fluctuate upon repetition of the
measurement?
Implies some set of assumptions to define probability of
outcome of the measurement.
Systematic errors:
What 1s the uncertainty in my result due to
uncertainty in my assumptions, €.g.,
model (theoretical) uncertainty;
modelling of measurement apparatus.

Usually taken to mean the sources of error do not vary
upon repetition of the measurement. Often result from uncertain
value of, e.g., calibration constants, etficiencies, ete.
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Systematic errors and nuisance parameters

Response of measurement apparatus 1s never modelled pertectly:

model; y = a + Bz

truth: y = o + Bz + ')/:f_:2 +exd+ ...

y (measured value)

x (true value)

Model can be made to approximate better the truth by including
more free parameters.

systematic uncertainty <= nuisance parameters
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Example: fitting a straight line
Data: (z;,y:,0;),i=1,...,n.

Model: measured y, independent, Gaussian:  y; ~ N (u(x;), cr,l-_z)

u(z;00,01) = 0g + 012, s

data
fit
: 18 F
assume x; and o, known.
14 F __'___....+ -
Yy PSS _._+__——*—— {—
Goal: estimate 6, 12 |
(don’t care about 6)). T
08 L
o 0.5 1 15
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Frequentist approach

71 1 (y; — (x5 00,01))?
L(6 ?8 — eXx —— ;
( 0 1) ?:1;[1 VQ'?TLT@: P 2 0-12
" (y; — pw(aq; 00, 01))?
2(60,01) = —21n L(Bg, 61)+const = 3 Wi~ #7i 60,01))"
i=1 a;

Standard deviations from 0.1 . — —
0.1} -

tangent lines to contour

p.oa
2 L 2 D.08
X° = Xmint1.
D.07
01 i
Correlation between s
Ay, 61 causes errors o , _
D03 - i 1 =
tO 'i'ﬂC-lﬁeaSe. 0.02 L I i A L
1.24 1.2B 1.28 1.3 1.3 1.34
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Frequentist case with a measurement 7, of 0,

" (y; — w(x;; 0p,01))? 01 —t1)?
XQ(QO:H].):Z(y M(mgo 1)) _I_(l 21) .

i=1 a; 0y

The information on 6,

improves accuracy of 0o -

0.08

0.07 [

01

D.06 |-

0.05 [-
0.04 - : R

0.03 ; -

D.02 . . .
1.24 1.26 1.28 1.3 1.32 1.34
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Bayesian method

We need to associate prior probabilities with 6, and 6,, e.g.,

m(0p,01) = mo(0o) m1(01)  reflects ‘prior ignorance’, in any
to(0y) = const. < casc much broader than 7.(6,)
2 2 . . .
m1(01) = 1 —(621-t1)%/207,  « based on previous

e
V2mo, measurement

Putting this into Bayes’ theorem gives:

T
. L (yi—pu(zi:00,61))2 /202 1 —(61-t1)?/207
p(0o, 019) e  \WiIT IR0 i TQ =€ 1
?11;[1 V2mo; V2o,
A A
Ill III
Hx \ f*
\ : /
posterior o likelithood X prior
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Bayesian method (continued)

We then integrate (marginalize) p(6,, 6, | x) to find p(6, | x):
p(8ol2) = [ p(00, 01]) by

In this example we can do the integral (rare). We find

1 —(Ho—gg)Q/QJQ :
Oglz) = e %  with
p(6o|z) V2ron,
o = same as ML estimator
Thy = T, (same as before)

Ability to marginalize over nuisance parameters 1s an important
feature of Bayesian statistics.
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Glen Cowan

Digression: marginalization with MCMC

Bayesian computations involve itegrals like

p(6ole) = [ p(bo, 01]x) o1 .

often high dimensionality and impossible 1n closed form,

also 1mpossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Cham Monte Carlo (MCMC) has revolutionized
Bayesian computation.

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than \n .

—

Basic idea: sample multidimensional 6,
look, e.g., only at distribution of parameters of interest.

Statistical Methods for LHC Physics
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Example: posterior pdf from MCMC

Sample the posterior pdf from previous example with MCMC:

01" [
ﬁuﬂ | s 13 I ey H It;
Yo 01
Summarize pdf of parameter of

— interest with, €.g., mean, median,
T standard deviation, etc.

o
Although numerical values of answer here same as 1n frequentist
case, Interpretation 1s different (sometimes unimportant?)

Glen Cowan Statistical Methods for LHC Physics
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Bayesian method with vague prior

Suppose we don’t have a previous measurement of 6, but
rather some vague information, e.g., a theorist tells us:

6, > 0 (essentially certain);
6, should have order of magnitude less than 0.1 ‘or so’.

Under pressure, th% theorist sketches the following prior:
m1(601) :—E_Ql/T 61 >0, 7=0.1.
T

From this we will obtain posterior probabilities for 6, (next slide).

We do not need to get the theorist to ‘commut’ to this prior;
final result has ‘1f-then’ character.

Glen Cowan Statistical Methods for LHC Physics
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Sensitivity to prior

Vary 7(6) to explore how extreme your prior beliefs would have
to be to justify various conclusions (sensitivity analysis).

Try exponential with different  Try different functional forms...

40 T T T T 23 T
£ = 0.001 flat prior ——
=1 1 t= 001 o _ A8} exponertal, 1 = 0.1
i p— - #if)) truncated Gaussian, o= 0.1 —
30
L - =
2 15 |- y
n
/ W4
20 ! '-,.l‘-.}
ol e
15 - | ."_ "-.I._‘
:' " LK 4
el \a
10} . /7 ¢
5 /7 )
sk - N
i "
P B
o i i — 0 — i I\Eq"-'\—
12 125 13 1.48 1.2 125 13 138 1.4 1.48
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Outlook for Bayesian methods in HEP
Bayesian methods allow (indeed require) prior information about
the parameters being fitted.
This type of prior information can be difficult to
incorporate into a frequentist analysis

This will be particularly relevant when estimating uncertainties on
predictions of LHC observables that may stem from theoretical
uncertaimties, parton densities based on inconsistent data, etc.

Prior 1ignorance 1s not well defed. If that’s what you’ve got,

don’t expect Bayesian methods to provide a unique solution.
Try a reasonable variation of priors -- 1f that yields
large variations 1n the posterior, you don’t have much
information coming in from the data.

You do not have to be exclusively a Bayesian or a Frequentist
Use the right tool for the right job
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Outlook for data analysis at the LHC

Recent developments from Machine Learning provide some new tools
for event classification with a number of advantages over those methods
commonly used in HEP, e.g.,

Boosted decision trees

Support Vector Machines

Bayesian methods can allow for a more natural treatment of
non-repeatable phenomena, e.g., model uncertainties.
MCMC can be used to marginalize posterior probabilities

Software for these methods now much more easily available, expect
rapid development as the LHC begins to produce real results.
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Quotes I like

“Alles sollte so einfach wie moglich sein,
aber nicht einfacher.”
— A. Einstein

“If you believe in something
you don't understand, you suffer,...”
— Stevie Wonder
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Extra slides
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Probability — quick review

Frequentist (A = outcome of Hutcome is A
q ( P(A) = lim outcome is

repeatable observation): n

Subjective (A = hypothesis): P(A) = degree of belief that A is true
P(ANB

Conditional probability: P(A|B) = (P(B) )

P(B/A)P(A)  P(B|A)P(A)
P(B) = P(B|A;)P(A))

Bayes' theorem: P(AB) =
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Bayes optimal analysis

From Bayes' theorem we can compute the posterior odds:

p(s|x) _p(xs) p(s)
p(blx) p(X[b)p(b)
R B
posterior odds likelihood  prior odds
ratio

which 1s proportional to the likelihood ratio.

So placing a cut on the likelihood ratio 1s equivalent to ensuring
a minimum posterior odds ratio for the selected sample.
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Classification viewed as a statistical test

Probability to reject H it itis true (type I error): & :f f (y|H 0 ) dy
Rl
o = significance level, size of test, false discovery rate

Probability to accept HO if H] 1s true (type II error): B :f f ( y| H 1)dy
R

0

1 — B = power of test with respect to H

Equivalently if e.g. H = background, H = signal, use efficiencies:

e,=J f(y|H,)dy=1-g=power  &,=] f(y|H,)dy=1-a
R, R

0
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Purity / misclassification rate

Consider the probability that an event assigned to a certain category
1s classified correctly (i.e., the purity).

Use Bayes' theorem:

Here R 1s signal region prior probability
, .
S P(x € Ry|s)P(s)
Plspx € F) = P(x € Ry|s)P(s) + P(x € Ry|b)P(b)
posterior probability

N.B. purity depends on the prior probabilities for an event to be
signal or background (~s, b cross sections).
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Impertect pdf estimation

What if the approximation we use (e.g., parametric form, assumption
of variable independence, etc.) to estimate p(x) 1s wrong?

If we use poor estimates to construct the test variable

1A
YT,

then the discrimination between the event classes will not be optimal.

But can this cause us e.g. to make a false discovery?

Even if the estimate of p(x) used in the discriminating variable are
imperfect, this will not atfect the accuracy of the distributions AylH ),

f(y\H 1); this only depends on the reliability of the training data.
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Using the classifier output for discovery

signal
search
A A :
J) N(y) " region
background background
excess?
\ - —— >
y y cut y
Normalized to unity Normalized to expected

number of events

Discovery = number of events found in search region incompatible
with background-only hypothesis. Maximize the probability of this
happening by setting y for maximum sAb (roughly true).
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Controlling talse discovery

So for a reliable discovery what we depend on 1s an accurate estimate
of the expected number of background events, and this accuracy only

depends on the quality of the training data; works for any function y(x).

But we do not blindly rely on the MC model for the training data for
background; we need to test it by comparing to real data in control
samples where no signal 1s expected.

The ability to perform these tests will depend on on the complexity of
the analysis methods.
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MCMC basics: Metropolis-Hastings algorithm

Goal: given an n-dimensional pdf P(g ) s
generate a sequence of points 01,602,03, ...

Proposal density ¢ (5 ! 50)

. e.g. Gaygssian centred
2) Generate 8 ~ q(6;6g) about %

1) Start at some point 6o

1

. Nq(0p; 0
3) Form Hastings test ratio &« = MinN p(9)q(to )}

" p(00)q(8; 6)

4) Generate u ~ Uniform[0, 1]
5) If ula, 0 = 0 , < move to proposed point

else 1 = 0p < old point repeated

6) Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how
each new point depends on the previous one).
For our purposes this correlation 1s not fatal, but statistical
errors larger than naive V7 .

The proposal density can be (almost) anything, but choose
$O as to minimize autocorrelation. Often take proposal

density symmetric: Q(Q_E 50) — q(go; 0) .
p(0)
p(6o)

I.e. if the proposed step 1s to a point of higher p(g ) , take it;

Test ratio is (Metropolis-Hastings): « = min |1

if not, only take the step with probability p(g )/ p(go) :
If proposed step rejected, hop in place.
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Metropolis-Hastings caveats

Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow p(0) .

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.
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A more general fit (symbolic)

Given measurements: yitof@t 1oV i=1,...n,
and (usually) covariances: VStet, Vﬁys.

Predicted value: ;(z;;0), expectation value E[y;] = p(z;;0) + b,

/
control variable parameters bias

I . _ tat SyS
Often take:  Vj; = V3" + V@jy
Minimize x?(0) = (7 — ji(0))" V(7 — i(6))

Equivalent to maximizing L(6) » e 7%, 1.e., least squares same
as maximum likelihood using a Gaussian likelihood function.
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[ts Bayesian equivalent
Take  L(710,5) ~ exp | -3 (7— i(6) = )T Viza (7 — i(6) - )

6 Vit B

— 1
7 (b) ~ exp [—5

Joint probability

mp(0) ~ const. / for all parameters

and use Bayes’ theorem: (g, b|7) o< L(§]6,b)me(0) (D)
To get desired probability for €, integrate (marginalize) over b:
p(617) = [ p(6,817) db

— Posterior 1s Gaussian with mode same as least squares estimator,
o, same as from y* = »* . + 1. (Back where we started!)
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The error on the error
Some systematic errors are well determined

Error from finite Monte Carlo sample

Some are less obvious
Do analysis 1 » ‘equally valid” ways and
extract systematic error from ‘spread’ in results.
Some are educated guesses
Guess possible size of missing terms 1n perturbation series;
vary renormalization scale (/2 < Q <2u ?)
Can we incorporate the ‘error on the error’?

(cf. G. D’ Agostini 1999; Dose & von der Linden 1999)
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A prior for bias 7,(b) with longer tails

1 bf
mp(b;) = exp =5 —— ms(si) ds;

1
/ V 271'3?30?:53’5

Represents ‘error
on the error’;

0.0
oo00n {2 standard deviation
of 7.(s)1s o,

1806 |

1e-08

Gaussian (0, =0)  P(jb|>40,,) = 6.3 x 107
o, = 0.5 P(b|>40,) = 6.5x 107

A
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A simple test

Suppose fit effectively averages four measurements.

Take 0. =0

SYS stat

Case #1: data appear compatible

= (.1, uncorrelated.

Posterior p(u

m

V):

=
T

p(uly)

=
m

measurement

experiment

Usually summarize posterior p(uly)
with mode and standard deviation:

Glen Cowan

J7

os = 0.5
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0s=0.0: p=1.0004£0.071
= 1.000 + 0.072
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Simple test with inconsistent data

Case #2: there 1s an outlier Posterior p(uly):
_ aves, =0 & o p(u|_y)?— =15 —
— 15 { 7 5
L
= il
2 I
- 3|
vl
S os 2
L
s '

Glen Cowan

experiment J7,
os=0.0: p=1.1254+0.071

—

os=05: 4 =1.093+0.089
— Bayesian fit less sensitive to outlier.

— Error now connected to goodness-of-fit.
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Goodness-of-fit vs. size of error

In LS fit, value of minimized »? does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high »? corresponds to a larger error (and vice versa).

0.02 T T T T . w
e 2000 repetitions of
H 0085 = .
Py N | experiment, o, = 0.3,
ooe - -1__', el -

here no actual bias.

0.075

0.or

posterior p

|~ o, from least squares

=2

=

m
I

0.08 ] ] ] ]
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