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Summary. A tractable skew t -distribution on the real line is proposed.This includes as a special
case the symmetric t -distribution, and otherwise provides skew extensions thereof.The distribu-
tion is potentially useful both for modelling data and in robustness studies. Properties of the new
distribution are presented. Likelihood inference for the parameters of this skew t -distribution is
developed. Application is made to two data modelling examples.
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1. Introduction

Student’s t-distribution occurs frequently in statistics. Its usual derivation and use is as the sam-
pling distribution of certain test statistics under normality, but increasingly the t-distribution
is being used in both frequentist and Bayesian statistics as a heavy-tailed alternative to the nor-
mal distribution when robustness to possible outliers is a concern. See Lange et al. (1989) and
Gelman et al. (1995) and references therein.
It will often be useful to consider a further alternative to the normal or t-distribution which

is both heavy tailed and skew. To this end, we propose a family of distributions which includes
the symmetric t-distributions as special cases, and also includes extensions of the t-distribution,
still taking values on the whole real line, with non-zero skewness. Let a > 0 and b > 0 be
parameters. Then, the density function of this new distribution is

f.t/ = f.t; a; b/ = C−1
a;b

{
1 + t

.a + b + t2/1=2

}a+1=2 {
1 − t

.a + b + t2/1=2

}b+1=2

.1/

where

Ca;b = 2a+b−1 B.a; b/.a + b/1=2

and B.·; ·/ denotes the beta function. When a = b, f reduces to the t-distribution on 2a degrees
of freedom. When a < b or a > b, f is negatively or positively skewed respectively. In fact,
f.t; b; a/ = f.−t; a; b/. Note that a and b are positive real numbers and need not be integer or
half-integer.
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A preliminary account of this distribution is in Jones (2001a), where two derivations of it are
provided. The first is a mathematical manipulation in which the symmetric t-density function is
factorized into two parts and those parts are taken to different powers. The skew t-densities thus
emulate the symmetric t-densities in forming a mathematical sequence tending to the normal
density, albeit with two parameters a; b → ∞ rather than one.
The second derivation is to note that, if B has the beta distribution on .0; 1/ with parameters

a and b, then

T =
√
.a + b/.2B − 1/
2
√{B.1 − B/} .2/

has density (1). The a = b special case of this relationship was known to Fisher (1915).
An equivalent formulation comes from the relationship between a beta random variable and

a pair of independent χ2 random variables. This yields

T =
√
.a + b/.U − V/

2
√
.UV/

.3/

where U and V are independent with χ22a- and χ22b-distributions respectively. The a= b

special case of this relationship is also known (Cacoullos, 1965). From equation (3), yet
another representation of T is as 1

2
√
.a + b/ .W1=2 −W−1=2/whereW = aF=b and F has the F -

distribution with 2a and 2b degrees of freedom. Simple methods for obtaining random variates
having density (1) are thus available by transforming variates from standard distributions.
Fig. 1 shows a variety of skew t-densities. In Fig. 1(a), b = 4 and, in Fig. 1(b), b = 1. In

each frame, seven densities are shown: for a = b, the symmetric t2b-density, and, in increasing
order of skewness, for a = 2ib, i = 1; . . . ;6. The raw densities have been recentred to have
mean 0 and rescaled to the same scaling as the standard symmetric t-density in each case. In
Fig. 1(a), this is done by using the formulae for the mean and variance given in Section 2.1; in
Fig. 1(b), the variance does not exist, and so, purely as a matter of expediency, the densities are
matched in terms of mean and inter-point-of-inflection distance. Fig. 1(a) displays a range of
fairly gentle skewings of the t8-distribution. Fig. 1(b) suggests that a little more severe skewness
can be attained based on the t2 starting-point.
Some properties of the distribution are presented in Section 2; these are its distribution func-

tion, moments and mode (Section 2.1), its large skewness limit (Section 2.2), some measures of
skewness (Section 2.3) and the distribution’s tail behaviour (Section 2.4). Proofs of two results
from Section 2 are given in Appendix A.
Although one potential application of the skew t-distribution is in robustness studies, it is the

more important robust data modelling aspect of the skew t-distribution, as a model for data
exhibiting skewness and/or heavy tails, that we concentrate on in this paper. This is accom-
plished in practice by incorporating location and scale parameters, quite possibly depending on
covariates. Likelihood inference for the resulting four parameters of the skew t-distribution is
discussed in Section 3, first derivatives of the log-likelihood and elements of the observed infor-
mation matrix being given in Appendix B. These are written in terms of a reparameterization
of the skew t-distribution which is a central concern of Section 3, with an outline proof of its
properties in Appendix C.
We go on, in Section 4, to present two illustrative examples in which the usefulness of the skew

t-distribution is apparent. The current skew t proposal is briefly compared with other recent
skew t-distributions in Section 5. Finally, in Section 6, some closing comments are made.
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Fig. 1. Standardized densities (1) for a D 2i b, i D 0, . . . , 6, having increasing amounts of skewness, in the
cases (a) b D 4 and (b) b D 1

2. Basic properties

2.1. Distribution function, moments and mode
Formula (2) is invertible and thus provides the distribution function of T as

F.t; a; b/ = I{1+t=
√
.a+b+t2/}=2.a; b/

where Ix.·; ·/ denotes the incomplete beta function ratio.
The following equivalent expressions for E.T r/ can be obtained, as in Appendix A. Note the

conditions on a and b for the moments to exist.
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Result 1. Provided that a > r=2 and b > r=2,

E.T r/ = .a + b/r=2

B.a; b/

r∑
i=0

(
r

i

)
2−i.−1/i B

(
a + r

2
− i; b − r

2

)
.4a/

= .a + b/r=2

2r B.a; b/

r∑
i=0

(
r

i

)
.−1/i B

(
a + r

2
− i; b − r

2
+ i

)
: .4b/

It is immediate that

E.T / = .a − b/
√
.a + b/

2

Γ.a − 1
2 /Γ.b − 1

2 /

Γ.a/Γ.b/
;

where Γ.·/ is the gamma function, and

E.T 2/ = .a + b/

4
.a − b/2 + a − 1 + b − 1

.a − 1/.b − 1/
:

These expressions reduce to the values for the symmetric t-distribution on 2a degrees of freedom
when a = b, namely 0 and a=.a − 1/ respectively.
By differentiating equation (1), it is easy to see that f is unimodal, with mode at

.a − b/
√
.a + b/√

.2a + 1/
√
.2b + 1/

: .5/

2.2. Limiting distributions
It was mentioned in Section 1 that, if a and b become large together, the skew t-distribution
tends to the normal distribution.
A different limiting result is obtained if we let b remain fixed and consider the case where

a → ∞. Provided that we normalize density (1) by accounting for its increasing location and
scale, a limiting distribution arises, and this reflects the situation in Fig. 1. This limiting distri-
bution is the distribution of

√
2 over the square root of a χ2 random variable on 2b degrees of

freedom.

Result 2. As a → ∞ and b > 1 remains fixed, σa;b f.σa;bt + µa;b; a; b/ → σb fb.σbt + µb/
where

fb.t/ = 2{Γ.b/t2b+1}−1 exp.−1=t2/: .6/

Here µa;b and σa;b are the mean and standard deviation of T given in Section 2.1, and µb =
Γ.b − 1

2 /=Γ.b/ and

σb =
[

1
b − 1

−
{

Γ2.b − 1
2 /

Γ2.b/

}]1=2

are the mean and standard deviation of the limiting distribution.

See Appendix A for the proof. Result 2 normalizes using mean and variance, and it is this
that introduces the b > 1 restriction; other location and scale measures could have been used
which would not require this restriction.

2.3. Skewness
The classical skewness measure based on the third moment is available for a; b > 3

2 from the
moment formulae of Section 2.1. An attractive alternative skewness measure is 1 − 2 F (mode)
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(Arnold and Groeneveld, 1995). This exists for any a; b > 0 and has a simple expression:

1 − 2 I.a+1=2/=.a+b+1/.a; b/:

For a; b > 1
2 , the third L-moment ratio or L-skewness (Hosking, 1990),∫

F.x/{2 F.x/− 1}{1 − F.x/} dx
/∫

F.x/{1 − F.x/} dx;

can be readily calculated numerically.
Numerical experiments suggest that all three skewness measures are monotone increasing

functions of a for fixed b and monotone decreasing functions of b for fixed a. We have not been
able to prove this. Broadly speaking, this means that high absolute values of skewness within
the class are associated with small values of the parameters, as suggested by Fig. 1.

2.4. Tail behaviour
Student’s t2b-density has tails that behave as |t|−.2b+1/ as t → ±∞. For a > b, the skew t-
distribution has a right-hand tail which remains as t−.2b+1/, which is large for small b. The
left-hand tail of the skew t-distribution is reduced in weight to order |t|−.2a+1/ as t → −∞. This
well reflects the tail behaviour that is observable in Fig. 1. For a < b, the tails are reversed.

3. Likelihood inference

For fitting to independent and identically distributed data,X1; . . . ;Xn, we consider the general,
four-parameter, version of the skew t-density (1) given by σ−1 f{σ−1.x−µ/; a; b} where µ and
σ are additional location and scale parameters. The skew t-distribution affords full tractability
of quantities involved in asymptotic likelihood theory. See, for example, the elements of the ob-
served information matrix (after reparameterization, for which see below) given in Appendix B.
A Fisher scoring algorithm would therefore be available for likelihood maximization.
We have used likelihood inference in the examples to follow mostly in a straightforward way

using numerical optimization of the log-likelihood function and standard χ2-approximations
to the distributions of log-likelihood ratios. In general, such likelihood inference seems very
successful. In our many investigations, we have never come across a likelihood surface that
was not unimodal; see Section 4.2 for a brief report of some simulation results to this effect.
The only situation in which likelihood inference breaks down corresponds to a problem that
is well documented in likelihood fitting of symmetric t-distributions with unknown degrees of
freedom, namely the difficulties that are encountered when a + b is rather less than 1 (Fraser
(1979), chapter 2, Lange et al. (1989) and Fernández and Steel (1999)). We are pragmatic about
this: such distributions have extremely heavy tails and the whole business of directly modelling
data containing many extreme outliers is not to be recommended.
There remains, however, the issue of reparameterization. As a starting-point, we might re-

parameterize in terms of ν = a+ b and λ = a− b. The former has the same degrees of freedom
role as ν in the symmetric tν-distribution, and λ is a parameter controlling skewness, the sym-
metric t-distribution corresponding to λ = 0. That said, a little thought shows that λ is not very
satisfactorily tied to skewness: a normalization of λ with respect to ν would appear to be more
meaningful and will be provided below.
In general, there are no zeros in the expected information matrix nor therefore in the as-

ymptotic covariance matrix of the maximum likelihood estimates .ν̂; λ̂; µ̂; σ̂/. This contrasts
with the symmetric t case for which the only non-zero asymptotic correlation is between ν̂ and
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σ̂. Indeed, in the symmetric t case, it is possible to derive an orthogonal reparameterization
(Cox and Reid, 1987) such as {ν;µ; νσ=.1+ ν/}. However, there does not seem to be any such
orthogonal reparameterization in the skew t case. We are not, however, too dismayed by this;
an orthogonal parameterization, although attractive if available, is a luxury that is not available
to many useful statistical models.
It is, however, possible to produce a reparameterization which induces regular estimation for

a and/or b infinite. The reparameterization that we suggest can also be found in Prentice (1975):

p = 2
a + b

= 2
ν
;

q = a − b√{ab.a + b/} = 2λ√{.ν2 − λ2/ν} :
.7/

As values of .a; a/, .∞; a/, .a;∞/ and .−∞;∞/ for .a; b/ correspond respectively to t2a,√
.2=χ22a/, −√

.2=χ22a/ and normal distributions, so the same four distributions correspond
to .p; q/ taking values of .1=a;0/, .0;1=

√
a/, .0; −1=

√
a/ and (0, 0) respectively. The advantage

of this is that the limits as p and q tend to 0 both singly and together of @l=@p and @l=@q are
finite and non-zero, where l denotes the contribution to the log-likelihood based on the nor-
malized density σa;b f.σa;bt + µa;b/ from an observation x, where t = .x − µ/=σ. This result
requires a substantial amount of Taylor series manipulation which is outlined in Appendix C.
In particular,

lim
p;q→0

(
@l

@q

)
= − 5

12
.t3 − 3t/;

lim
p;q→0

(
@l

@p

)
= 1

8
.t4 − 6t2 + 3/:

.8/

It follows that the score test for normality within this family is based on .nS3/−1 Σ .Xi − X̄/3

and .nS4/−1 Σ .Xi − X̄/4 − 3, the usual sample skewness and kurtosis.
Reparameterization (7) first arose in Prentice’s (1975) work on likelihood fitting of the log-

F -distribution. It turns out that a yet more general family of distributions to be investigated
elsewhere suggests strong analogies between the skew t- and log-F -distributions. However, the
skew t-family has polynomial tails and the log-F -family has exponential tails, so the fact that
the same reparameterization works for both is by no means obvious.

4. Examples

4.1. Example 1: strengths of glass fibres
Our first example concerns a random sample of data which would appear to be well fitted by the
skew t-distribution. The data set is ‘sample 1’ of Table 1 of Smith andNaylor (1987) concerning

Table 1. Estimates and approximate standard errors

p̂ q̂ µ̂ σ̂

Estimate 0.627 −0:360 1.698 0.179
Standard error (observed) 0.346 0.143 0.077 0.035
Standard error (expected) 0.285 0.148 0.079 0.029
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(a)

(b)

Fig. 2. (a) Histogram of the Smith and Naylor (1987) data ( ), together with the fitted skew t -distribution
(– – –) and (b) P P -plot for the same data and fit

the breaking strengths of n = 63 glass fibres of length 1.5 cm, originally obtained by workers at
the UK National Physical Laboratory.
A histogram is presented in Fig. 2(a) along with the fitted skew t-distribution obtained by

maximum likelihood. The latter has p̂ = 0:627, q̂ = −0:360, µ̂ = 1:698 and σ̂ = 0:179. The
left skewness of this data set is apparent from q̂ < 0, and there is evidence in favour of this
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(a)

(b)

Fig. 3. 75%, 80%, 85%, 90% and 95% profile log-likelihood confidence regions for the parameters (a)
(ν, λ) and (b) (p, q/, under different parameterizations of the skew t -distribution for the Smith and Naylor
(1987) data: ·, positions of the maximum likelihood estimates
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asymmetry according to twice the log-likelihood ratio of 6:08 on 1 degree of freedom (p-value
approximately 0.01). In addition, the fitted skew t-distribution has fairly heavy tails, particularly
to the left, â = 1:107, but also to the right, b̂ = 2:084. A PP-plot of the fitted distribution is
given in Fig. 2(b); the good fit of the model to the data is apparent.
Table 1 shows approximate standard errors of the estimates, obtained from both the observed

and the expected information matrices. The latter were obtained from formulae which we do
not give in the paper. In Fig. 3, we contrast the profile log-likelihood confidence regions in the
.ν;λ/ and .p; q/ parameterizations. Fig. 3(a) exhibits considerable asymmetry in the profile log-
likelihoods for ν and λ, with a strong negative correlation between the estimates of these two
parameters. However, reparameterization (7) resulted in more elliptically shaped confidence
regions, as shown in Fig. 3(b). Approximate orthogonality of p and q seems apparent here. The
parameter qmight then be a preferred measure of skewness over λ itself. Estimation of µ and σ
appears to be more precise than that of p and q with the approximate standard errors, shown in
Table 1, being relatively smaller (considerably so for µ). This will be of particular value in the
regression examples to follow.
Smith and Naylor (1987) fitted a three-parameter Weibull distribution to these data. One

parameter was a lower cut-off point, estimated to be −1:6 by maximum likelihood, but more
reasonably estimated to be 0:027 or 0:172 by two Bayesian methods. Although the last two
estimates point to a (defensible) lower limit of 0, it is unclear what a non-zero result would
mean, and the difficulties associated with estimation involving such a parameter are consider-
able (witness the whole paper devoted to this fitting!). Confirmation that the combination of
skewness and heavy tails that is provided by the skew t-distribution is necessary is provided
by the inadequacy of a skew normal distribution fitted to these data in unpublished work of
A. R. Pewsey.

4.2. Simulations
Simulations of data from distributions with a range of different parameter values suggest that
the log-likelihood surface is of the unimodal shape typified by Fig. 3. Confidence regions for
(λ; ν), or contours of the log-likelihood surface, become less concentrated around themaximum
likelihood estimate as the ‘degrees of freedom’ parameter ν increases, or equivalently the confi-
dence regions for (p; q) become more concentrated around their maximum likelihood estimate
as p decreases. Confidence regions for (p; q) are typified by Fig. 3(b), and thus these simulations
lend support to the reparameterization (7) achieving approximate orthogonality of parameters.

4.3. Example 2: blood flow data
Lange et al. (1989), example 3, described calibration of blood flow data by using a non-linear
regression model. Here, the response variable Y is the blood flow in the canine myocardium
measured non-invasively by using positron emission tomography (PET) and the covariate x
is this blood flow measured invasively by using radioactively labelled microspheres. Two PET
measurements were considered: one from scans taken up to 60 s and the other from scans taken
up to 510 s, and the regression model was based on E.Y/ = x{1 − θ1 exp.−θ2=x/}:

Fig. 4(a) shows the first of these PET measurements plotted against x, together with the
fitted regressions from using both a symmetric t-distribution for the residuals (as in Lange et
al. (1989)) and the skew t-distribution. The skew t-distribution gives a significant improvement
over the symmetric t (twice the log-likelihood ratio statistic is 19.50), although the fitted re-
gression lines are quite similar. The parameter estimates (with asymptotic standard errors in
parentheses) are θ̂1 = 0:62 .0:013/, θ̂2 = 104:6 .8:1/, p̂ = 0 and q̂ = 0:321 .0:066/, so the fitted
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(a)

(b)

Fig. 4. Blood flow data (�), skew t ( ) and symmetric t (– – –) regression fits: (a) first data set;
(b) second data set

residual distribution is of the limiting form (6) with σ̂ = 393:0 .169:3/. Residual plots show that
this distribution adequately describes the variation.
In Fig. 4(b) is a plot of the second PET measurement data set with its symmetric t and skew

t regression lines. Again, there is a significant improvement in the fit using the skew t-distri-
bution for the residual variation, twice the log-likelihood ratio statistic being 21.43. But, here,
the fitted regression lines are more than a little different, and the fitted skew t-distribution has
p̂ = 1:21 .0:17/ so the tails are heavy and result in infinite variance. The other estimated parame-
ters are θ̂1 = 0:69 .0:029/, θ̂2 = 191:3 .26:8/, q̂ = −0:197 .0:053/ and σ̂ = 23:12 .2:19/. Residual
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plots from this skew t fit point to some inadequacies in the model. This is quite possibly due to
the clear shift of the fitted regression line, compared with the symmetric t fit, in the direction
of the skewness, Fig. 4(b), and is a consequence of modelling the mean in conjunction with
a highly skewed residual distribution. It might be preferable to model an alternative location
measure, such as the mode, when there is such a high level of residual variation. If this is done,
then a regression line between those shown in Fig. 4(b) is obtained, with some improvement in
the residual plots as well as a significant improvement over the symmetric t fit.

5. Comparison with other skew t -distributions

There are several proposals in the literature that can be regarded as competing skew t-
distributions. In this section, we make brief comparisons with perhaps the two simplest and
most popular alternatives. Other skew t-type distributions which are more complicated and
more difficult to work with include the non-central t-distribution (e.g. Johnson et al. (1995),
chapter 31), the Pearson type IVdistribution (e.g. Skates (1993)), a special case of the generalized
hyperbolic distribution (Barndorff-Nielsen and Shephard, 2001) and other somewhat arbitrary
mathematical constructs (e.g. Butler et al. (1990)).

5.1. A first alternative skew t-distribution
Let l and L be the density and distribution functions of any distribution on the real line, sym-
metric about zero. A first general method of skewing l is to define

g.t;ψ/ = 2L.ψt/ l.t/: .9/

Here, ψ = 0 is the symmetric case; positively skew distributions arise for ψ > 0, and g.t; −ψ/ =
g.−t;ψ/. For general and normal cases, see O’Hagan and Leonard (1976) and Azzalini (1985).
For Bayesian deployments of the skew t case, see Mukhopadhyay and Vidakovic (1995) and
DiCiccio et al. (1997). For a closely related variation on the skew t version of equation (9), see
Azzalini and Capitanio (2003) and Sahu et al. (2002).
Although equation (9) is easy towrite down, there is, in the t case, an incomplete beta function

in the density, leading to relative intractability of the distribution function. The distribution is
always unimodal (Azzalini, 1985) but it is not possible to find an analytic expression for the
mode. The even moments are those of the tν-distribution but the odd moments are intractable.
Forψ > 0, the left-hand tail of the t version of equation (9) goes as |t|−.2ν+1/ and the right-hand
tail as t−.ν+1/ for |t| → ∞. As ψ → ∞ for fixed ν, g.t;ψ/ tends to the half-tν-distribution. The
intractability of certain moments extends to intractability of the expected information matrix
and thus the unavailability of a Fisher scoring algorithm for likelihood maximization.
Azzalini and Capitanio (2003) also fitted his skew t-distribution to the glass fibre data of Sec-

tion 4.1. We would strengthen Azzalini’s statement that conclusions from fitting the two skew
t models are ‘broadly similar’ to being very similar.
The skew t-distributions of this section do, however, have extensions to the multivariate case

(e.g. Azzalini and Capitanio (2003)) that seem to be more useful than current multivariate
extensions of our skew t-distribution (e.g. Jones (2001b)).

5.2. A second alternative skew t-distribution
An alternative approach to skewing symmetric distributions is to piece together two differently
scaled halves of the symmetric base distribution in a continuous manner:
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h.t;φ/ = 2φ
1 + φ

{l.t/ I.t � 0/+ l.φt/ I.t < 0/}: .10/

Here, I.·/ is the indicator function and φ > 0. In equation (10), φ = 1 is the symmetric case,
positively skew distributions arise from φ > 1 and their negatively skew companions from
0 < φ < 1. The two-piece normal distribution seems to originate from Gibbons and Mylroie
(1973) and has recently been discussed by Garvin and McClean (1997) and Mudholkar and
Hutson (2000). Application to the t-distribution has been made by Fernández and Steel (1998).
Expression (10) is tractable, if a little clumsy, using the tν base density. The distribution func-

tion and moments can be written down and the distribution is unimodal with mode at zero.
Both tails match those of the tν-distribution. As φ → ∞ for fixed ν, l.t;φ/ also tends to the
half-tν-distribution.

Note, however, that whereas odd derivatives of l.t;φ/ are 0 at the origin even derivatives,
including importantly the second, are discontinuous there. This has the disadvantage of mak-
ing standard asymptotic likelihood theory inapplicable. Fernández and Steel (1998) resorted to
Bayesian fitting of this skew t-distribution.

6. Closing remarks

To illustrate the potential of the skew t-distribution for data analysis, we have presented single-
sample and non-linear regression examples that were sufficiently simple for the usefulness of the
skew t-distribution to be apparent. Of course, the skew t-distribution is equally applicable to lin-
ear regression and to all the more complicated modelling situations such as multiple regression
and time series modelling, and will be useful as an additional distribution in robust statistical
modelling. Our skew t-distribution is sufficiently tractable that likelihood theory for it can be
developed fully, an advantage that this distribution has over competing distributions. (This also
affords a Fisher scoring algorithm for maximization of the likelihood function in more complex
cases.) It is also appealing that modelling using the skew t-distribution is performed on the
original scale of the data.
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Appendix A

A.1. Proof of result 1
From equation (2), we have

E.T r/ = 2−r.a + b/r=2 E

[
.2B − 1/r

{B.1 − B/}r=2
]

= .a + b/r=2

2r B.a; b/

∫ 1

0
.2y − 1/rya−r=2−1.1 − y/b−r=2−1 dy

= .a + b/r=2 B.a − r=2; b − r=2/
2r B.a; b/

E{.2Yr − 1/r}

where Yr has the beta distribution on .0; 1/ with parameters a− r=2 and b− r=2. This is the source of the
requirement that a and b both be greater than r=2. Formulae (4a) and (4b) follow via binomial expansion
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of .2Yr − 1/r, directly in the case of equation (4a) and after writing 2Yr − 1 = Yr − .1 − Yr/ for equation
(4b).

A.2. Proof of result 2
First, note that, as a → ∞, Γ.a − 1

2 /=Γ.a/ ∼ a−1=2, so that µa;b ∼ aµb=2 and σa;b ∼ aσb=2. To O.1/:

log.σa;b/  log.a/+ log.σb=2/;

− 1
2 log.a + b/  − 1

2 log.a/;

− log{B.a; b/}  − log{√
.2π/} − .b − 1

2 / log.b − 1/+ b log.a/+ b − 1

(Abramowitz and Stegun, 1965),

.a + 1
2 / log.u+/  .a + 1

2 / log.2/− χ−2.t; b/
and

.b + 1
2 / log.u−/  −.b + 1

2 / log.a/+ .b + 1
2 / log.2/− .2b + 1/ log{χ.t; b/};

where u± = [1 ± .σa;bt + µa;b/={a + b + .σa;bt + µa;b/
2}1=2] and χ.t; b/ = σbt + µb. Summing all these

gives the approximation to log{σa;b f.σa;bt+µa;b/}. The coefficients of a and log.a/ are 0, and the leading
term is

log.σb/+ log.2/− log{√
.2π/} + b − 1 − .b − 1

2 / log.b − 1/− χ−2.t; b/− .2b + 1/ log{χ.t; b/}
which, when exponentiated and with Stirling’s formula applied, yields equation (6).

Appendix B

Write uk = {2σ2 + p.Xk − µ/2}−1=2√p.Xk − µ/, R = √
.q2 + 2p/ and ψ.x/ = d[log{Γ.x/}]=dx. The first

derivatives of the log-likelihood using the reparameterized form, in the order associated with p then q, µ
and σ, can be shown to be

−1
2p2

(
4n ψ

( 2
p

)
− np− 4n log.2/

−
(
1 + q

R
+ p

2

) n∑
k=1

uk.1 − uk/+
(
1 − q

R
+ p

2

) n∑
k=1

uk.1 + uk/

+ 2
{
1 + q

R3
.R2 + p/

}[ n∑
k=1

log.1 + uk/− n ψ
{ 1
p

(
1 + q

R

)}]

+ 2
{
1 − q

R3
.R2 + p/

}[ n∑
k=1

log.1 − uk/− n ψ
{ 1
p

(
1 − q

R

)}])
;

2
R3

(
− n

[
ψ

{ 1
p

(
1 + q

R

)}
− ψ

{ 1
p

(
1 − q

R

)}]
+

n∑
k=1

{log.1 + uk/− log.1 − uk/}
)
;

1
σ
√
.2p/

{(
1 − q

R
+ p

2

) n∑
k=1

√
.1 − u2k/.1 + uk/−

(
1 + q

R
+ p

2

) n∑
k=1

√
.1 − u2k/.1 − uk/

}

and

− n

σ
+ 1

pσ

{(
1 − q

R
+ p

2

) n∑
k=1

uk.1 + uk/−
(
1 + q

R
+ p

2

) n∑
k=1

uk.1 − uk/
}
:
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Next, we present the elements jk of the observed informationmatrix j = Σn
k=1 j

k. Additional notation is
ψ′.x/ = d2[log{Γ.x/}]=d2x. Ignoring the dependence on k for clarity, these elements are

jpp = 1
p4

[{
1 + q.R2 + p/

R3

}2
ψ′

{ 1
p

(
1 + q

R

)}
+

{
1 − q.R2 + p/

R3

}2
ψ′

{ 1
p

(
1 − q

R

)}

+ 2q
R3

.R2 + p/up− 4ψ′
( 2
p

)
− p2

2
− u2p+ p

2

{ q

R
.u3 − 3u/+ 2.p+ 1/u2 − .p+ 2/u4

}]
;

jpq = −2
p2R3

[{
1 + q.R2 + p/

R3

}
ψ′

{ 1
p

(
1 + q

R

)}
−

{
1 − q.R2 + p/

R3

}
ψ′

{ 1
p

(
1 − q

R

)}
+ up

]
;

jpµ =
√{2.1 − u2/}

p3=2σ

[−q.R2 + p/

R3
+ u− .1 − u2/

2

{
.p+ 2/u− q

R

}]
;

jpσ = 2u
p2σ

[−q.R2 + p/

R3
+ u− .1 − u2/

2

{
.p+ 2/u− q

R

}]
;

jqq = 4
R6

[
ψ′

{ 1
p

(
1 + q

R

)}
+ ψ′

{ 1
p

(
1 − q

R

)}]
;

jqµ = 2
√
.2p/

√
.1 − u2/

R3σ
;

jqσ = 4u
R3σ

;

jµµ = 1 − u2

2σ2

{(
1 − q

R
+ p

2

)
.1 + u/.1 − 2u/+

(
1 + q

R
+ p

2

)
.1 − u/.1 + 2u/

}
;

jµσ = .1 − u2/3=2

σ2
√
.2p/

{(
1 − q

R
+ p

2

)
.1 + 2u/−

(
1 + q

R
+ p

2

)
.1 − 2u/

}
;

jσσ = − 1
σ2

+ u

pσ2

{(
1 − q

R
+ p

2

)
.1 + u/.2 + u− 2u2/−

(
1 + q

R
+ p

2

)
.1 − u/.2 − u− 2u2/

}
:

Appendix C

Preliminary Taylor series expansions include

log{Γ.k/}  k log.k/− k − 1
2
log.k/+ 1

2
log.2π/+ 1

12k
− 1

360k3

(Abramowitz and Stegun (1965), page 257) so that

Gk ≡ Γ.k − 1
2 /

2 Γ.k/
 1

2
√
k

(
1 + 3

8k
+ 25

128k2
+ 105

1024k3

)

and

ψ.k/  log.k/− 1
2k

− 1
12k2

so that

ψ.k + L/− ψ.k/  L

k
− L.L− 1/

2k2
as k → ∞ with L fixed.
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With l as described before equations (8), currently written as a function of a, b, µa;b and σa;b, we have

@l

@a
= σ′

a;b

σa;b
+ ψ.a + b/− ψ.a/− 1

2.a + b/
− log.2/+ log.u+/+ .a + 1

2 /u
′

u+
− .b + 1

2 /u
′

u−

where primes signify differentiation with respect to a, u± is given in Appendix A and u′ ≡ u′
+. For large a,

µa;b  aGb − .b=2−3=8/Gb ≡ aGb +A, say, and σa;b  a.σb=2/+{σ2
b −1+ .4b+1/G2

b}=4σb ≡ σb=2+B,
say, where σb is defined in result 2. Write y = σb=2 +Gb and K = At + B. Then,

u±  1 ±
{
1 − 1

2ay2
+ 1

a2

(
3
8y4

− b

2y2
+ K

y3

)}

and u′ can be written accordingly. It follows that

@l

@a
 1

a2

{
b.1 − 3b/

2
− 2A
σb

− 5
32y4

− K

2y3
+ 2b + 1

2y2
+ .2b + 1/K

y

}
: .11/

Similarly,

@l

@b
= σ]a;b
σa;b

+ ψ.a + b/− ψ.b/− 1
2.a + b/

− log.2/+ log.u−/+ .a + 1
2 /u

]

u+
− .b + 1

2 /u
]

u−

 σ]b
σb

− ψ.b/− 2 log.2/− 2 log.y/+ y]

2y3
− .2b + 1/

y]

y
; .12/

where the hash symbols signify differentiation with respect to b. This is O.1/ in a.
Now, much as in Prentice (1975), page 612,

lim
p→0

(
@l

@p

)
= lim

a→∞

(
−a2

2
@l

@a
− 3b2

2
@l

@b

)
;

lim
p→0

(
@l

@q

)
= lim

a→∞

(
−2b3=2

@l

@b

)
:

.13/

These are both, clearly, O.1/ in a, explicit expressions being available by the insertion of expressions (11)
and (12) above.

It remains to obtain the limits of @l=@p and @l=@q as q also tends to 0, by letting b → ∞ above. The
elements of expression (11) are functions of σb andGb. The former is also, in fact, a function ofGb, but it
remains useful to give its asymptotic approximation as

σb  1
2b

(
1 + 15

16b
+ 439

512b2

)
:

Much further manipulation shows terms of order b2, b3=2 and b in the bracketed right-hand side of ex-
pression (11) to be 0. Leading terms turn out to be

a2
@l

@a
 5

8
√
b.3t − t3/− 5

32
.7t4 − 12t2 + 1/: .14/

Similar manipulations apply to the elements of equation (12) which are functions of σb and Gb and their
derivatives with respect to b. Terms of order 1, 1=

√
b and 1=b are 0, and we find that

@l

@b
 − 5

24b3=2
.3t − t3/+ 1

96b2
.27t4 − 12t2 − 19/: .15/

Entering expressions (14) and (15) into equations (13) yields equations (8).
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