Statistics for Searches at the LHC

Glen Cowan

Abstract This chapter describes several topics in statistical datdyais as used
in High Energy Physics. It focuses on areas most relevanhatyses at the LHC
that search for new physical phenomena, including steaistests for discovery
and exclusion limits. Particular attention is payed to tteatment of systematic
uncertainties through nuisance parameters.

1 Introduction

The primary goal of data analysis in High Energy Physics (HEB test our current
understanding of particle interactions and in doing so tvaefor phenomena that
go beyond the existing framework of the Standard Model. €Hestures describe
some of the basic statistical tools that alone one to do this.

Despite efforts to make the lectures self contained, sommlifaity with ba-
sic ideas of statistical data analysis is assumed. Inttamhe to the subject can
be found, for example, in the reviews of the Particle Datauprl] or in the
texts [2, 3, 4, 5, 6].

Brief reviews of probability are given in Sec. 2 and frequ&trttypothesis tests in
Secs. 3 and 4. These are applied to establishing discovdryedting limits (Sec. 5)
and are extended using the profile likelihood ratio (Sedréjn which one can con-
struct unified intervals (Sec. 7). Bayesian limits are déseudl in Sec. 8 and all of the
methods for limits are illustrated using the example of asBain counting experi-
ment in Sec. 9. Application of the standard tools for disegwand limits leads to a
number of unexpected difficulties, such as exclusion of nsowewhich one has no
sensitivity (Sec. 10) and the look-elsewhere effect (S&k.lh Sec. 12 we examine
why one traditionally requires five-sigma significance tail a discovery and fi-
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nally some conclusions are drawn in Sec. 13. The lecturesepted at SUSSP also
included material on unfolding or deconvolution of measidestributions which is
not included here but can be found in Ref. [7] and Chapter 1Reff [2].

2 Review of probability

When analyzing data in particle physics one invariably entens uncertainty, at
the very least coming from the intrinsically random natufewantum mechanics.
These uncertainties can be quantified using probabilitychvitvas defined by Kol-
mogorov [8] using the language of set theory. Suppose & sentains elements
that can form subset, B, .... As an example, the elements may represent possible
outcomes of a measurement but here we are being abstracteadd not need to
insist at this stage on a particular meaning. The three axioifKolmogorov can be
stated as

1. ForallA C S, there is a real-valued functiddsuch thaP(A) > 0 ;
2. P(§=1;
3. fANB =0, thenP(AUB) = P(A)+P(B) .

In addition we define the conditional probability AfgivenB (for P(B) # 0) as

P(ANB)

P(B)
From these statements we can derive all of the familiar pt@seof probability.
They do not, however, provide a complete recipe for assggnimerical values to
probabilities nor do tell us what these values mean.

Of the possible ways to interpret a probability, the one neosamonly found in
the physical sciences is as a limiting frequency. That isjnterpret the elements
of the sample space as possible outcomes of a measurementeaakeP(A) to
mean the fraction of times that the outcome is in the suhsethe limit where we
repeat the measurement an infinite number of times undenticld” conditions:

P(AJB) = &)

P(A) = lim times outcome is ||A' B
n—co n

Use of probability in this way leads to what is called tinrequentistapproach
to statistics. Probabilities are only associated with onotes of repeatable obser-
vations, not to hypothetical statements such as “superstrgnis true”. Such a
statement is either true or false, and this will not changenugepetition of any
experiment.

Whether SUSY is true or false is nevertheless uncertain andamequantify
this using probability as well. To define what is callsabjective probabilityone
interprets the elements of the &ashypotheses.e., statements that are either true
or false, and one defines




Statistics for Searches at the LHC 3

P(A) = degree of belief tha is true. 3)

Use of subjective probability leads to what is callalyesian statisticowing to its
important use of Bayes’ theorem described below.

Regardless of its interpretation, any quantity that satisfhe axioms of proba-
bility must obey Bayes’ theorem, which states

P(BIA)P(A)
PB) (4)

This can be derived from the definition of conditional proitigb(1), which we can
write asP(ANB) = P(B)P(A|B), or equivalently by changing labels BéBNA) =

P(A)P(A/B). These two probabilities are equal, however, becaus® andBN A
refer to the same subset. Equating them leads directly talEq (

In Bayes’ theorem (4) the conditioB represents a restriction imposed on the
sample spacé such that anything outside & is not considered. If the sample
spaceScan be expressed as the union of some disjoint subgdts- 1,2, .. ., then
the factorP(B) appearing in the denominator can be writiB) = ; P(B|A )P(A)
so that Bayes’ theorem takes on the form

P(AB) =

__P(BIAP(A)
PR = S PEAP(A ©

In Bayesianas opposed to frequentist) statistics, one uses subggmtdbability
to describe one’s degree of belief in a given theory or hygsith The denominator
in Eg. (5) can be regarded as a constant of proportionality therefore Bayes’
theorem can be written as

P(theorydatg O P(datdtheory)P(theory) , (6)

where “theory” represents some hypothesis and “data” isthleome of the experi-
ment. HereP(theory) is theprior probability for the theory, which reflects the exper-
imenter’s degree of belief before carrying out the measergrandP(datdtheory)
is the probability to have gotten the data actually obtajmggden the theory, which
is also called théikelihood

Bayesian statistics provides no fundamental rule for olinigi the prior prob-
ability; in general this is subjective and may depend on iprey measurements,
theoretical prejudices, etc. Once this has been specifteaeVer, Eq. (6) tells how
the probability for the theory must be modified in the lighttoé new data to give
the posterior probability, P(theorydatg. As Eq. (6) is stated as a proportionality,
the probability must be normalized by summing (or integrgtiover all possible
hypotheses.
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3 Hypothesis tests

One of the fundamental tasks in a statistical analysis isgbwhether the predic-
tions of a given model are in agreement with the observed dtee we will use

X to denote the outcome of a measurement; it could represengle sjuantity or a
collection of values. A hypothesld means a statement for the probability to find
the datax (or if x includes continuous variablel, specifies a probability density
function or pdf). We will writeP(x|H) for the probability to find datx under as-
sumption of the hypothesis.

Consider a hypothesidg that we want to test (we will often call this the “null”
hypothesis) and an alternative hypothedis In frequentist statistics one defines a
testof Hg by specifying a subset of the data space callectthigal region w; such
that the probability to observe the data there satisfies

P(x e wHp) <a. (7)

Herea is a specified small constant, such as 5%. For continuousa@aakes the
relation above as an equality. If the data are discrete, agch number of events,
then there may not exist any subset of the data values whosmed probability
is exactly equal tax, so one takes the critical region to have a probability up to
The critical regiorw defines the test. If the data are observewjone rejects the
hypothesidHg.

Up to this point the sole defining property of the test is E{, @Which states that
the probability to find the data in the critical region is nobma thana. But there
are in general many if not an infinite number of possible stsdbskthe data space
that satisfy this criterion, and it is not clear which shoblel taken as the critical
region. This is where the alternative hypothddiscomes into play. One would like
the critical region to be chosen such that there is as higlolagfility as possible to
find the data there if the alternative is true, while havingydhe fixed probability
o assumingHo, as illustrated schematically in Fig. 1.

f(x|H)

f(XlHO) critical region

f(x|H,)

Fig. 1 lllustration of the critical region of
a statistical test (see text).
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Rejecting the hypothesidy if it is in fact true is called a type | error. By con-
struction the probability for this to occur is the size of tiest, a. If on the other
hand we do not rejedtly but we should have, because the alternatlyavas true,
then this is called a type Il error. The probability to rejfee null hypothesis if the
alternativeH; is true is called thgpowerof the test with respect th;, which is one
minus the probability of a type Il error.

A significance tesbf a hypothesiH is closely related to the tests described
above. Suppose a measurement results inxdéasingle number or a collection of
many values) for which the hypothesispredicts the probabilityP(x|H). We ob-
serve a single instance ®fsay Xqps, @and we want to quantify the level of agreement
between this outcome and the predictionglof

To do this the analyst must specify what possible data valwesd constitute a
level of incompatibility withH that is equal to are greater than that betweeand
the observed date,ns Once this is given, then one computes thealue ofH as
the probability, under assumption idf, to find data in this region of equal or greater
incompatibility.

When computing thep-value there is clearly some ambiguity as to what data
values constitute greater incompatibility withthan others. To give meaning to the
statement that a givex has less compatibility withid, we must imply that it has
more compatibility with some alternative hypothesis.

We should emphasize that tipevalue is not the probability ofl. To compute
this, we would need to use Bayes’ theorem (8), and this requimat we specify
prior probabilities for all hypotheses, whereas fitealue does not depend on prior
probabilities.

We can relate the two types of frequentist tests by spedfginritical region for
a test ofHp of sizea as the set of data values that would haveealue less than
or equal toa. The resulting test will have a certain power with respeany given
alternativeHy, although these were not used explicitly in constructing d¢htical
region.

In the language of a frequentist test, vagect Hy if the data are found in the
critical region, or equivalently, if thep-value of Hp is found less or equal tor.
Despite this language, it is not necessarily true that weldvawuld then believe
Ho to be false. To make this assertion we should quantify ouresegf belief about
Ho using subjective probability as described above, and ittinesomputed using
Bayes’ theorem:

P(x|Ho)(Ho)
i P(x[Hi)ri(Hi)

As always, the posterid?(Ho|X) is proportional to the prior(Hp), and this would
need to be specified if we want to express our degree of bbkg¢the hypothesis is
true.

For most of these lectures we will stay within the frequerftiamework. The
result of our analysis will be p-value for the different models considered. If this is
less than some specified valaewe reject the model.

P(Holx) = (8)
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Often thep-value is translated into an equivalent quantity calledsilgeificance
Z, defined by

Z=oY1-p). ©)

where® is the cumulative standard Gaussian distribution (zerameait variance)
and @1 s its inverse function, also called tlygiantile of the standard Gaussian.
The definition of significance illustrated in Fig. 2(a) ané gignificance versug-
value is shown in Fig. 2(b). Often a significanceZof 5 is used as the threshold for
claiming discovery of a new signal process. This correspdad very lowp-value
of 2.9 x 10~’. The rationale for such an extreme threshold is discussehiefuin
Sec. 12.

Although we can simply take Eq. (9) as our defining relationZoit is useful to
compare to the case of measuring a quantitiyat follows a Gaussian distribution
with unknown mearu. Suppose we want to test the hypothgsis- 0 against the
alternativeu > 0. In this case we would take the critical region of the testdotain
values ofx greater than a certain threshold, or equivalently, we waldtine the
p-value to be the probability to findas large as we found or larger. In this case the
significanceZ is simply the value ok observed, measured in units of its standard
deviationg. For this reason one often refers to finding a significancd, say, 2.0
as atwo-sigma effect.

@ g (b)

1 e <
——€ ]

,/ \an = "N z-50
)

oL _

-value = 7
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=z X 10 10° 10" 10? 1
p-value

Fig. 2 (a) lllustration of the definition of significancgand (b) the significance as function of the
p-value.

4 Choice of critical region, test statistics

We now examine more closely the question of how best to ddiimeritical region
of a test and for this consider the example of selecting a Eaafijgvents of a desired
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type (signal, denotes) from others that we do not want (backgroubyl, That is, for
each event we will measure some set of quantitjeghich could represent different
kinematic variables such as the missing energy, numbertsfjember of muons,
and so forth. Then for each event carry out a test of the backgt hypothesis, and
if this is rejected it means we select the event as a candsiziiel event.

Suppose that the and b hypotheses imply probabilities for the dataR(x|s)
andP(x|b), respectively. Figures (3) show these densities for two gmments of
the data space along with possible boundaries for the @fitggion.

Fig. 3 Scatter plots of two variables corresponding to two hypotsidsackgroundHp) and signal
(H1). The critical region for a test dflp could be based, e.g., on (a) cuts, (b) a linear boundary, (c)
a nonlinear boundary.

Figure 3(a) represents what is commonly called the ‘cuebaapproach. One
selects signal events by requiring < ¢; andx, < ¢ for some suitably chosen cut
valuesc; andc,. If x; andx, represent quantities for which one has some intuitive
understanding, then this can help guide one’s choice ofuheatues.

Another possible decision boundary is made with a diagooals shown in
Fig. 3(b). One can show that for certain problems a lineamblary has optimal
properties, but in the example here, because of the cuntedenaf the distributions,
neither the cut-based nor the linear solution is as good @sidmlinear boundary
shown in Fig. 3(c).

The decision boundary is a surface in thdimensional space of input variables,
which can be represented by an equation of the fgim) = yeut, whereyeyt is some
constant. We accept events as corresponding to the sigpathgsis if they are on
one side of the boundary, e.g(x) < ycut could represent the acceptance region and
y(X) > yeut could be the rejection region.

Equivalently we can use the functig(x) as a scalatest statisticOnce its func-
tional form is specified, we can determine the pdfs/of) under both the signal
and background hypothesqxy|s) and p(y|b). The decision boundary is now ef-
fectively a single cut on the scalar varialyleas illustrated in Fig. 4.

We would like to design a test to have maximum reject a hymighéit is false,
which is what we have called the power of the test. Unfortelyad test with maxi-
mum power with respect to one alternative will not be optimidh respect to others,
so there is no such thing as an ideal “model-independent” hevertheless, for a
specific pair of signal and background hypotheses, it tutiglaat there is a well



8 Glen Cowan

p(y)

Yy
accepts <t rejects

cut

151

1k p(yls)
p(ylb)

051

‘ : Fig. 4 Distributions of the scalar test
0 1 2 3 4 5 statisticy(x) under the signal and back-
ground hypotheses.

defined optimal solution to our problem. TiNeyman—Pearsolemma states that
one obtains the maximum power relative for the signal hypsithfor a given sig-
nificance level (background efficiency) by defining the ataepe region such that,
for x inside the region, thdikelihood ratig, i.e., the ratio of pdfs for signal and
background,

_ f(xls)
y(x) = Fx(D)

is greater than or equal to a given constant, and it is lessttiia constant every-
where outside the acceptance region. This is equivalertestatement that the
ratio (10) represents the test statistic with which oneiobtthe highest signal effi-
ciency for a given background efficiency, or equivalently, d given signal purity.

In principle the signal and background theories shouldsalis to work out the
required functiond (x|s) and f (x|b), but in practice the calculations are too difficult
and we do not have explicit formulae for these. What we haveausoff (x|s) and
f(x|b) are complicated Monte Carlo programs, that is, we can sareroduce
simulated signal and background events. Because of thévaridte nature of the
data, wherex may contain at least several or perhaps even hundreds ofarents,
it is a nontrivial problem to construct a test with a power ggehing that of the
likelihood ratio.

In the usual case where the likelihood ratio (10) cannot bed usxplicitly,
there exists a variety of other multivariate classifiershsas neural networks,
boosted decision trees and support vector machines thettig#ly separate dif-
ferent types of events. Descriptions of these methods cafodred, for exam-
ple, in the textbooks [9, 10, 11, 12], lecture notes [13] amdceedings of the
PHYSTAT conference series [14]. Software for HEP includesTtMVA[15] and
StatPatternRecognition [16] packages.

(10)
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5 Frequentist treatment of discovery and limits

The use of a statistical test to in an analysis involvingadléht event types comes up
in different ways. Sometimes both event classes are knowrish, and the goal is
to select one class (signal) for further study. For exampieton—proton collisions
leading to the production of top quarks are a well-establisbrocess. By selecting
these events one can carry out precise measurements ofptlogidok’s properties
such as its mass. This was the basic picture in the previa®seThe measured
quantities referred to individual events, and we testedtlieehypothesized event
type for each.

In other cases, the signal process could represent an @éxieiosthe Standard
Model, say, supersymmetry, whose existence is not yet lesiald, and the goal
of the analysis is to see if one can do this. Here we will imadime “data” as
representing not single events but a sample of eventsanentire “experiment”. If
the signal process we are searching for does not exist, tlnesaonple will consist
entirely of background events, e.g., those due to StandardelMprocesses. If the
signal does exist, then we will find both signal and backgdawents. Thus the
hypothesis we want to test is

Ho : only background processes exist
versus the alternative
H; : both signal and background exist

We will refer to the hypothesiklg as the background-only model (or simply’}
and the alternativéd; as the signal-plus-background model b. The Neyman-
Pearson lemma still applies. In a testHyf of a given size, the highest power rel-
ative toH; is obtained when the critical region contains the highekiesof the
likelihood ratioL(H1)/L(Ho). Here, however, the likelihood is the probability for
the entire set of data from the experiment, not just for iitial events.

RejectingHp means in effect discovering a new phenomenon. Of coursedefo
we believe that we have made a new discovery, a number of otmeerns must
be addressed, such as our confidence in the reliability oftitestical models used
the plausibility of the new phenomenon and the degree tolwihitan describe the
data. Here however we will simply focus on question of stigti$ significance and
in effect equate “rejecting the background-only” hypotik&gth “discovery”. Often
in HEP one claims discovery when tipevalue of the background-only hypothesis
is found below 2 x 107, corresponding to a 5-sigma effect. We will revisit the
rationale behind this threshold in Sec. 12.

Even if one fails to discover new physics by rejecting the kgaound-only
model, one can nevertheless test various signal modelsesnid ghese can be re-
jected. Signal models are usually characterized by somncmus parameters rep-
resenting, e.g., the masses of new particles. If we carnadast of sizex for all
possible values of the parameters, then those that arejaotaé constitute what is
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called aconfidence regiowith aconfidence levadf CL = 1— a. By construction a
parameter value will, if it is true, be rejected with prodahia. Therefore the con-
fidence region will contain the true value of the parametahprobability 1— a.
For purposes of confidence limits one typically uses a testzsfa = 0.05, which
is to say the regions have a confidence level of 95%.

If the problem has only one parameter, then the region igdallconfidence in-
terval. An important example is where a parameteis proportional to the cross
section for the signal process being sought. Here one isestied in testing a hy-
pothetical value relative to the alternative hypothesé the signal does not exist,
i.e., u = 0. The critical region of the test is then taken have highebpbility for
the lower values of the parameter.

For example, suppose the data consist of a valhat follows a Gaussian distri-
bution with unknown meap and known standard deviatian If we test a valugu
relative to the alternative of a smaller value, then théaaitregion will consist of
values ofx < c for some constart such that

C 1 2/952 c—u
— (x=M)/20% 4y —
a= e dx= @ , 11
./700 V210 ( o ) (11)
or
c=pu—ocd(1-a). (12)

If we take, e.g.a = 0.05, then the facto® (1 — a) = 1.64 says that the critical
region starts at 1.64 standard deviations below the valye loéing tested. Ik is
observed any lower than this, then the correspongingrejected.

Equivalently we can take the-value of a hypothesized, p,, as the probability
to observex as low as we found or lower, and we then rejadf we find p, < a.
The highest value oft that we do not reject is called thgper limitof y at a
confidence level of - a, and we will write this here agyp Lower limits i, can
of course be constructed using an analogous procedureattiqge these points are
found by settingp, = a and solving foru. There are a number of subtle issues
connected with limits derived in this way and we will retumthese in Sec. 10.

5.1 A toy example

Consider an experiment in which we measure for each selegtrd two quantities,
which we can write as a vectar= (X1, x2). Suppose that for background everts
follows

f(x|b) = ile—x/fl(fize—x/f2 : (13)

and for a certain signal model they follow
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wherex; > 0, xo > 0 andC is a normalization constant. The distribution of events
generated according to these hypotheses are shown in Big. 5(

f(x|s) =C e~ (xe—H2)?/20% (14)

0.5 (b)

— background

f(a)

02H

0.1F

Fig. 5 (a) Distributions ofk = (x1,X2) for events of type signal (red circles) and background (blue
triangles) shown with a contour of constant likelihood ratim) the distribution of the statistig
for signal and background events.

First, suppose that the signal and background both comelfmoevent types that
are known to exist and the goal is simply to select signahisitase we can exploit
the Neyman-Pearson lemma and base the selection on thbdit€lratio

f(x]s)

We can define the same critical region by using any monotamictfon of the like-
lihood ratio, and in this case it is useful to take

(15)

2 2
X1 — H1 Xo — H2 2X;|_ 2X2
=== + — — —2— = —2Iny(Xx) + const. 16
g < 01 ) ( (op) ) é1 & Y (16)

Distributions of the statistig for the signal and background hypotheses (14) and
(13) are shown in Fig. 5(b). This shows that a sample enhancgdnal events can
be selected by selecting events wdtkess than a given threshold, sayyt.

Consider now a search for a signal process whose existenogeyst established.
Suppose that the expected numbers eventb afdbackgrounds for a given signal
model. For now assume that the model’s prediction for bottihe$e quantities can
be determined with negligible uncertainty. The the actuahber of events that
we find can be modeled as a Poisson distributed quantity wines@ we can write
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asus+ b, wherepu is a parameter that specifies the strength of the signal gsoce
That is, the probability to fineh events is

n
P(nu) = @e—(uwb) ) (17)
The values ok follow a pdf that is a mixture of the two contributions frongeal
and background,

us
Us+b
where the coefficients of each term give the fraction of evefitach type.

The complete measurement thus consists of seleatagnts and for each one
measuring the two-dimensional vector quantityl he full likelihood is therefore

) = 109+ - ). 18)

e-(ustb) n

U[usf(xi ) +bf(xib)] .  (19)

L(u) = () [ FOxlu) = S

We can now carry out tests of different hypothetical valuleg.oTo establish the
existence of the signal process we try to reject the hypattesthe background-
only model,u = 0. Regardless of whether we claim discovery we can set liomts
the signal strengtl, which we examine further in Sec. 10.

Let us first focus on the question of discovery, i.e., a tegt ef 0. If the signal
process exists, we would like to maximize the probabilityttive will discover it.
This means that the test of the background-omply= 0) hypothesis should have
as high a power as possible relative to the alternative thdudes signal if =
1). According to the Neyman-Pearson lemma, the maximum p@achieved by
basing the test on the likelihood ratig1) /L(0), or equivalently on the statistic

L(1) n s f(xi|s)

Q 2In L0) S—&—i;In <l+bf(xib)> . (20)

The term—sin front of the sum is a constant and so only shifts the distidn of Q
for both hypotheses equally; it can therefore be dropped.

Other than—s on the right-hand side of Eq. (20) there is a sum of contrdnsi
from each event, and because th&alues follow the same distribution for each
event, each term in the sum follows the same distributiorfilidthe pdf ofQ we
can exploit the fact that the distribution of a sum of rand@mables is given by the
convolution of their distributions. The full distributiozan therefore be determined
using Fourier transform techniques from the correspondingle-event distribu-
tions; details can be found in Ref. [17].

Following our toy example, suppose we take the expected etsrdf events to
beb = 100 for background ansl= 20 for signal. The distribution of the statistig
is found in this case simply by generating experiments afingrto they = 0 and
U = 1 hypotheses, computing for eaGhaccording to Eq. (20) and recording the
values in histograms. This results in the distributionsigihn Fig. 6(a).
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Fig. 6 (a) Distribution of the statisti@ assuming = 20 andb = 100 under both the background-
only (1 = 0) signal-plus-backgroungi(= 1) hypotheses; (b) same as in (a) but wittreated as
having an uncertainty afi, = 20 (see text).

To establish discovery of the signal process, we use thestita® to test the
hypothesis thatt = 0. As the test statistic is a monotonic function of the likelid
ratio L(1)/L(0), we obtain maximum power relative to the alternativeLo& 1.
The p-vale of u = 0 is computed as the area bel@uyps in Fig. 6, i.e.pp = P(Q <
Qobg0), because here lowé) corresponds to data more consistent with a positive
U (e.g.,u = 1). Thep-value can be converted into a significatasing Eq (9) and
if this is greater than a specific threshold (e.g., 5.0) themrejects the background-
only hypothesis.

To set limits onu we can use the statistic

L(H)

Qu=-2In TOR (21)
defined such that the special c&3gis the same as the statis@rused above for dis-
covery. This will provide maximum power in a test pfrelative to the background-
only alternative. The distribution @ is also shown in Fig. 6) fou = 1. Thep-value
of the u = 1 hypothesis is given by the area above the observed @lpe since
higher values of) are more consistent with the alternativepof= 0. This is shown
here for the special case pf= 1 but one can repeat the procedure usi@y|u)
for any other value oft and compute th@-value p, in the analogous manner. To
find the upper limit one would carry out the analysis as déscriabove for all val-
ues ofu and reject those that hayg, < a for, saya = 0.05. The highest value of
U not rejected is then the upper limit at 95% C.L.
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5.2 Systematic uncertainties and nuisance parameters

Until now we have treated the expected number of backgrouadteb as known
with negligible uncertainty. In practice, of course, thigsymot be true and so we
may need to regart as an adjustable parameter of our model. That is, we regard
Eq. (19) as givind-(u,b), wherep is the parameter of interest abds anuisance
parameter

There are two main ways of eliminating the nuisance paramétem the prob-
lem. First we consider the method motivated by Bayesiarstitz#; an alternative
approached using the profile likelihood is discussed in 8e@/e may have a best
guess fom, say,b, and our degree of belief about the true value of the paramete
may be described in a Bayesian sense by a priorgdf. As an example this could
be a Gaussian distribution centred abbwtith a standard deviatioay,:

1 B\2 /252
m(b) = ——e (B-D7/29% 22
(b) Voo (22)
In fact a Gaussian pdf fds may not be the most appropriate model and but it we
will use it here for illustrative purposes.
Using the pdfri(b) we can construct what is called the marginal (or prior predic
tive) likelihood,

Lm(n,xl,...,xn|u):/L(n,xl,...,xn|u,b)rr(b)db, 23)

where in the notation above we have emphasized that théhida of a model is
the probability for the data under assumption of that model.

Notice that the marginal model does not represent the piltityabf data that
would be generated if we were to really repeat the experimenthat case we
would not know the true value df, but we could at least assume it would not
change under repetition of the experiment. Rather, the imargiodel represents a
situation in which every repetition of the experiment isrt out with a new value
of b randomly sampled fronm(b). It is in effect an average of models each with a
givenb, where the average is carried out with respect to the demnshy.

For our tests we can use the same test statdtas before, but now we need
to know its distribution under assumption of the prior prtdie model. That is, if
b is known exactly then we obtain distributio$Q|u,b) such as those shown in
Fig. 6(a). What we want instead is the distribution based da tieat follows the
marginal model,

fn(Qlu) = [ 1(QIu.b)(b)db. @4)

Although it may not be obvious how to compute this integrtatain be done easily
with Monte Carlo by generating a value bfaccording tor(b), then using this
value to generate the dataxs, ..., Xn, and with these we find a value @fwhich is

recorded in a histogram. By repeating the entire procedlsega number of times
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we obtain distributions as shown in Fig. 6(b), which are getesl with a Gaussian
prior for b with b = 100 andgj, = 20.

As can be seen in Fig. 6, the effect of the uncertaintypdmoadens the distri-
butions ofQ such that thep-values for each hypothesis are increased. That is, one
may be able to reject one or the other hypothesis in the caseslviwas known be-
cause the-value may be found less than When the uncertainty ih is included,
however, thegp-values may no longer allow one to reject the model in quastio

As a further step one could consider using the marginalifikeld as the basis of
the likelihood ratio used in the test statistic, i.e., weet@= —2In(Lmn(1)/Lm(0)).
Use of a different statistic simply changes the criticaloagf the test and thus al-
ters the power relative to the alternative models consalérbis step by itself, how-
ever, does not take into account the uncertainty amd it will not result in a broad-
ening of f(Q|u) and an increase ip-values as illustrated above. This is achieved
by generating the distribution @ using the marginal model through Eq. (24). Test
statistics based on the ratio of marginal likelihoods wddvery difficult to com-
pute and are not used in practice. In some cases, howeveayitm beneficial to
baseQ on a ratio of profile likelihoods, which are described below.

6 Tests based on the profile likelihood

Suppose as before that the parameter of intergstdaad the problem may contain
one or more nuisance parametérgsuch as the parametérin the previous ex-
ample). An alternative way to test hypothetical valueguadé to define theprofile
likelihood,

Lp(u) = L(u,é(u)) ; (25)

Whereé(u), called is the profiled value of the nuisance paramétes the value
that maximized.(u, 0) for the specified value gfi. This is then used to construct
theprofile likelihood ratio

ML
L(f1,0)

where 1 and 6 are the values of the parameters that maximize the likethéo
some models it may be that can only take on values in a restricted range, e.g.,
U > 0 if this parameter is proportional to the cross section ef signal process.
In this case we can, however, reggiidas an effective estimator that is allowed
to take on negative values. This will allow us to write dowmgle formulae for
the distributions of the test statistics used that are validhe limit where the data
sample is very large.

The quantityA (u) is defined so that it lies between zero and one, with higher
values indicating greater compatibility between the daththe hypothesized value
of u. We can therefore usk() to construct a statistic to test different valueguof

(26)
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Suppose as above thats proportional to the rate of the sought after signal preces
and we want to test the background-only-€ 0) hypothesis.

Often the signal process is such that only positive valueg afe regarded as
relevant alternatives. In this case we would choose th&aritegion of our test
of u = 0 to correspond to data outcomes characteristic of positjiviat is, when
{1 > 0. It could happen that we fingl < 0, e.g., if the total observed number of events
fluctuates below what is expected from background alondnodigh a negativél
indicates a level of incompatibility between the data angdtiyesis ofu = 0, this
is not the type of disagreement that we want to exploit to atectliscovery of a
positive signal process.

Providing our signal models are of the type described abaeecan take the
statistic used to tegt =0 as

{—ZIn)\(O) >0,
Qo = R
0 H<o,

(27)

whereA (0) is the profile likelihood ratio fou = 0 as defined in Eq. (26). In this
way, higher values of|y correspond to increasing disagreement between data and
hypothesis, and so thevalue of u = 0 is the probability, assuming = 0 to find
(o at least high or higher than the observed value.
If we are interested in an upper limit for the parametethen we want the critical
region to correspond to data values characteristic of tteeradtivey = 0. This can
be achieved by defining
=2InA(p) p<up,
Ou = { ) (28)
0 u>p.

For both discovery and upper limits, therefore, fgalue for a hypothesized is
then

pu=/ f(qQulp, 6)day , (29)
Qu,obs

If we use the statistig, then we find the upper limit,, at confidence level + a
by settingp, = a and solving foru. This will have the propert(uy > t) > a.

To find thep-value we need the distribution of the test statistic undsueption
of the sameu being tested. For sufficiently large data samples one caw et
these distributions approach an asymptotic form relatetieachi-square distribu-
tion, where the number of degrees of freedom is equal to thebeu of parameters
of interest (in this example just one, i.gt). The asymptotic formulae are based
on theorems due to Wilks [18] and Wald [19] and are describddrither detail in
Ref. [20].

An important advantage of using the profile likelihood rasithat its asymptotic
distribution is independent of the nuisance parametersyes@re not required to
choose specific values for them to computepth&lue. In practice one has of course
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a finite data sample and so the asymptotic formulae are not.ekaerefore thep-
values will in general depend on the nuisance parameteme gxtent.

Providing the conditions for the asymptotic approximasidiold, one finds a very
simple formula for thep-value,

Pu=® (V) (30)

where @ is the cumulative distribution of the standard GaussiaonFEq. (9) we
find for the corresponding significance

Zy =/ - (31)

For discovery, we could requi# greater than some threshold such as 5.0, which
corresponds t@p < 2.9 x 10~7. When setting limits one usually excludes a param-
eter value if itsp-value is less than, say, 0.05, corresponding to a confidieneé
of 95%, or a significance of 1.64. Although Egs. (30) and (3&)amly exact for an
infinitely large data sample, the approach to the asympliatitis very fast and the
approximations often turn out to be valid for moderate omesarprisingly small
data samples. Examples can be found in Ref. [20].

For data samples not large enough to allow use of the asyimpdoinulae, one
must determine the distribution of the test statistics ineoteans, e.g., with Monte
Carlo models that use specific values for the nuisance paeasnén the exact fre-
quentist approach we would then only reject a valug dfwe find its p-value less
thana for all possible value of the nuisance parameters. Thesedoty a smaller
set of u values are rejected and the resulting confidence intenadrhes larger,
which is to say the limits o become less stringent. The confidence interval then
overcoverswhich is to say its probability to contain the truds greater than * o,
at least for some values of the nuisance parameters.

It may seem unfortunate if we cannot reject valuegudhat are retained only
under assumption of nuisance parameter values that magbly kiisfavoured, e.g.,
for theoretical reasons. A compromise solution is tegsing thep-value based only
on the profiled values of the nuisance parameters, i.e., kee ta

pu= [ F(Qulh, B dei. 32)
Qu,obs

This procedure has been callptbfile constructiorf21] in HEP orhybrid resam-
pling [22, 23] amongst statisticians. If the true values of of thesance parameters
are equal to the profiled values, then the coverage probabiflithe resulting con-
fidence interval foru is exact. For other values & the interval fory may over-
or undercover. In cases where it this is crucial one may bela wider range of
nuisance parameter values and study the coverage with NGarte.
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7 Unified intervals

The test ofu used for an upper limit assumes that the relevant altemagmpothesis

is u = 0, and the critical region is chosen accordingly. In otheeszone may regard

values ofu both higher and lower than the one being tested as valichaltiees, and

one would therefore like a test that has high power for boesaOne can show

that in general there is no single test (i.e., no given @itiegion) that will have the

highest power relative to all alternatives (see, e.g., Réf, Chapter 22).
Nevertheless we can use the statistic

t, = —2InA(u) (33)

to construct a test for any value pf As before, higher values of the statistic cor-
respond to increasing disagreement between the data ahgighthesizegu. Here,
however, the critical region can include data correspogpdinan estimated signal
strengthfi greater or less thap. The resulting test therefore has power relative to
values ofu both higher and lower than the one being tested. If one oot a test

of all values ofu using this statistic, then both high and low valuestahay wind

up being rejected.

Suppose the lowest and highest values not rejectegiaasd Lo, respectively.
One may be tempted to interpret the upper edge of such anahtes an upper limit
in the same sense as the one derived above wgirfgom Eq. (28). The coverage
probability, however, refers to the whole interval, i.enechasP(py < p < pp) >
1—a. One cannot in general make a corresponding statement tidgoptobability
for the upper or lower edge of the interval alone to be abovsetow u1, analogous
to the statemerf®(uyp > () > 1— a that holds for an upper limit.

The confidence intervals proposed by Feldman and Cousihsd8b calleduni-
fied intervals are based on a statistic similartfpfrom Eq. (33) with the additional
restriction that the estimatgrthat appears in the denominator of the likelihood ratio
is restricted to physically allowed values pf Large-sample formulae for the dis-
tributions and correspondingrvalues can be found in Ref. [20]. (In that reference
the statistic for the cage > 0 is called,.)

8 Bayesian limits

Although these lectures focus mainly on frequentist diatisprocedures we pro-
vide here a brief description of the Bayesian approach tiingelimits. This is in
fact conceptually much simpler than the frequentist procedSuppose we have a
model that contains a paramefey which as before we imagine as being propor-
tional to the rate of a sought-after signal process. In adthe model may contain
some nuisance parametétsAs in the frequentist case, we will have a likelihood
L(x|u, 8) which gives the probability for the datagiven u and 6. In a Bayesian
analysis we are allowed to associate a probability with patar values, and so we
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assess our degree of belief in a given model (or set of pasnaalues) by giving
the posterior probabilityp(u, 8]x). To find this we use Bayes’ theorem (4), which
we can write as a proportionality

p(u, 0]x) O L(x|u, 8)m(u, 6), (34)

where the prior pdft(u, 6) specifies our degree of belief in the parameters’ values
before carrying out the measurement.

The problematic ingredient in the procedure above is ther ilf 7(u, 6). For
a nuisance parametér one typically has some specific information that conssrain
one’s degree of belief about its value. For example, a clitin constant or back-
ground event rate may be constrained by some control measuts, leading to a
best estimat® and some measure of its uncertaiogy. Depending on the problem
at hand one may from these subsidiary measurements as vpélysi€al or theoret-
ical constraints construct a prior pdf fér In many cases this will be independent
of the value of the parameter of intergstin which case the prior will factorize,
i.e., m(u,0) =m(u)mp(0). For the present discussion we will assume that this is
the case.

The more controversial part of the procedure is the prigu ) for the parameter
of interest. As one is carrying out the measurement in oroldéedrn abouiu, one
usually does not have much information about it beforehahtiast not much rel-
ative to the amount one hopes to gain. Therefore one maydikgite down a prior
that isnon-informativei.e., it reflects a maximal degree of prior ignorance akout
in the hopes that one will in this way avoid injecting any hia® the result. This
turns out to be impossible, or at least there is no unique Waguantifying prior
ignorance.

As a first attempt at a non-informative prior for we might choose to take it
very broad relative to the likelihood. Suppose as beforegh@presents the rate of
signal so we hav@ > 0. As an extreme example of a broad prior we may try

gy =1- #=° (35)
s 0 otherwise

This so-called flat prior is problematic for a number of reasd-irst, it cannot be
normalized to unit area, so it is not a proper pdf; it is saibeamproper. Here this
defect is not fatal because in Bayes’ theorem the prior advegopears multiplied by
the likelihood, and if this falls off sufficiently rapidly asfunction ofu, as is often
the case in practice, then the posterior pdffiomay indeed be normalizable.

A further difficulty with a flat prior is that our inference isohinvariant under
a change in parameter. For example, if we were to take as tlaenesern = Inp,
then according to the rules for transformation of variabiesfind for the pdf of

7'51(’7)2"11(#)‘;“,; =elm(p(n)). (36)
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so if r,(p) is constant therry, (n) O €1 which is not. So if we claim we know
nothing abouiu and hence use for it a constant prior, we are implicitly sgythmat
we known something about.

Finally we should note that the constant prior of Eq. (35)rzdrin any realis-
tic sense reflect a degree of belief, since it assigns a zefapility to the range
between any two finite limits.

The difficult and subjective nature of encoding personavidedge into priors
has led to what is calledbjective Bayesian statistic&here prior probabilities are
based not on an actual degree of belief but rather derived fosmal rules. These
give, for example, priors which are invariant under a transfation of parameters or
which result in a maximum gain in information for a given setm@asurements. For
an extensive review see, for example, Ref. [36]; applicetim HEP are discussed
in Refs. [37, 38].

The constant prior of Eq. (35) has been used in HEP so widelyitlserves a
useful purpose as a benchmark, despite its shortcomingisoddh interpretation
of the posterior probability as a degree of belief is no largjdctly true, one can
simply regard the resulting interval as a given functionhaf tata, which will with
some probability contain the true value of the parametelikdithe confidence in-
terval obtained from the frequentist procedure, howeves,doverage probability
will depend in general on the true (and unknown) value of thieameter.

We now turn to the Bayesian treatment of nuisance paramefédnat we get
from Bayes’ theorem is the joint distribution of all of therpeneters in the problem,
in this case botly and6. Because we are not interested in the nuisance paraéeter
we simply integrate (or sum in the case of a discrete parajrtetéind the marginal
pdf for the parameter of interest, i.e.,

P(1) = [ Pk, 6lx)do @)

One typically has not one but many nuisance parameters andtégral required
to marginalize over them cannot be carried out in closed f&@wen Monte Carlo in-
tegration based on the acceptance-rejection method bedampeactical if the num-
ber of parameters is too large, since then the acceptanedeabmes very small.
In such cases, Markov Chain Monte Carlo (MCMC) provides &ectif/e means to
calculate integrals of this type. Here one generates alatetesequence of points
in the full parameter space and records the distributiomefgarameter of interest,
in effect determining its marginal distribution. An MCMC thed widely applica-
ble to this sort of problem is the Metropolis-Hastings aitfon, which is described
briefly in Ref. [13]. In-depth treatments of MCMC can be foufat example, in the
texts by Robert and Casella [32], Liu [33], and the review lBaN34].
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9 Limits for a Poisson counting experiment

As a simple example, consider an experiment in which one tsoamumber of
eventsn, modeled as following a Poisson distribution with a meas-pth, where
s andb are the contributions from signal and background processspectively.
Suppose thal is known and we want to set an upper limit enHere we will do
this with both frequentist and Bayesian methods.

To construct the frequentist upper limit we should test gpidthetical values of
s against to the alternative af= 0, so the critical region consists of low values of
n. This means we take thevalue of a hypothesizesito be the probability to fine
as small as observed or smaller, i.e.,

n S+bm B
S (T)e (sb) (38)
m=0 .

The upper limit at CL= 1— o is found from the value of such that the-value is
equal toa, i.e.,

o (Supt0)™ (b
a:nZOTe P =1-F2(2(sptb),2(n+1)), (39)
where in the second equality we used a trick that relatesuheaf Poisson prob-
abilities to the cumulative chi-square distribution fqn2- 1) degrees of freedom.
This allows us to solve for the upper limit

1
SJpzészl(l_aaZ(n+1))_b7 (40)

whereFX’zl is the chi-square quantile (inverse of the cumulative tistion). The
upper limitsyp is shown in Fig. 7(a) for - a = 95% as a function db for different
numbers of observed events

To find the corresponding upper limit in the Bayesian appnoae need to as-
sume a prior pdf fos. If we use the flat prior of Eq. (35), then by using Bayes’
theorem we find the posterior pdf

n
pisin) 0 &P e-toe0 (@1)
for s> 0 andp(u|n) = 0 otherwise. This can be normalized to unit area, which gives

(s+b)ne=(stb)
r(b,n+1)

wherel™ (b,n+ 1) = [;"x"e *dxis the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a prolyatoilg we can ex-
press an upper limit simply by integrating the posteriorfpdin the minimum value
s= 0 up to an upper limisyp such that this contains a fixed probability, say; .
That is, we require

p(sin) = (42)
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Fig. 7 Upper limits on the mean number of signal evenitg 95% confidence level as a function
of the expected backgrourixifor (a) the frequentist method and (b) Bayesian method with a flat
prior.

Sup
1—a:/ p(s/n)ds. (43)
0
To solve forsyp we can use the integral
a
/ X'eXdx=TI (n+1)F(2a,2(n+1)), (44)
Jo

where agairF,. is the cumulative chi-square distribution fo(r2+ 1) degrees of
freedom. Using this we find for the upper limit

1
sip=5Fz (P.2(N+1)) ~b, (45)

where

p=1-a(1-Fe(2020n+1)) . (46)

This is shown in Fig. 7(b). Interestingly, the upper limits the case db = 0 happen
to coincide exactly with the values we found for the freqigtnipper limit, and for
nonzerd the Bayesian limits are everywhere higher. This means liegttobability
for the Bayesian interval to include the true valuesdf higher than - a, so in this
sense one can say that the Bayesian limit is conservatieecadiiesponding unified
interval from the procedure of Feldman-Cousins is desdriberef. [25].

If the parameteb is not known, then this can be included in the limit using the
methods discussed above. That is, one must breata nuisance parameter, and in
general one would have some control measurement that eorsstts value. In the
frequentist approachis eliminated by profiling; in the Bayesian case one requires
a prior pdf forb and simply marginalizes the joint pdf e&ndb to find the posterior
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p(sin). The problem of a Poisson counting experiment with additioruisance
parameters is discussed in detail in Refs. [26, 37].

10 Limits in cases of low sensitivity

An important issue arises when setting frequentist lintitst is already apparent
in the example from Sec. 9. In Fig. 7(a), which shows the fesdist upper limit
on the parametes as a function ofo, one sees thad,, can be arbitrarily small.
Naive application of Eq. (40) can in fact result in a negatipper limit for what
should be an intrinsically positive quantity. What this hpaheans that all values
of s are rejected in a test of sizw. This can happen if the number of observed
eventa fluctuates substantially below the expected backgrdu@he is then faced
with the prospect of not obtaining a useful upper limit as thiecome of one’s
expensive experiment. It might be hoped that such an oaueere/ould be rare but
by construction it should happen with probability e.g., 5% of the time.

Essentially the same problem comes up whenever we test gmythesis to
which we have very low sensitivity. What “low sensitivity” raes here is that the
distributions of whatever statistic we are using is almbstgame under assumption
of the signal model being tested as it is under the backgrauniglhypothesis. This
type of situation is illustrated in Fig. 8(a), where here vavd labeled the model
including signals+ b (in our previous notationy = 1) and the background-only
modelb (i.e., u = 0)).

~ 06 ~ 0.08
g | e | @ 8% ®)
/ i
I~ QO S
ol Qobs 006 ) b
f(Qls+b) | | f(QIs+b) /f(QIb)
0.04 — \
02 I ‘
0.02 —
0 0 I
-8 6 4 -2 0 -80 -60 -40 -20 0
Q Q

Fig. 8 (a) Distributions of the statisti€ indicating low sensitivity to the hypothesized signal
model; (b) illustration of the ingredients for the limit.

A test of thes+ b hypothesis consists of high values@f Equivalently, thep-
value is the probabilityps,p = P(Q > Qopgs+ b). Because the distributions &
under both hypotheses are very close, the power of the test bfis only slightly
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greater than the size of the test which is equivalent to the statement that the
quantity 1— py is only slightly greater thaips. p.

If we have no sensitivity to a particular model, such as thaollyesis of a Higgs
boson with a mass much greater than what we could produce Experiment, then
we do no want to not reject it, since our measurement can peoda evidence to
justify such a claim. Unfortunately, the frequentist prdaee that rejects the signal
model if its p-value is found less thea will do just that with a probability of at
leasta. And this will happen even if the model is, from an experinaéstandpoint,
virtually indistinguishable from the background-only ogbesis. Since we typically
takea = 0.05, we will exclude one model out of every twenty to which weédao
sensitivity.

One solution to this problem is the glprocedure proposed by Alex Read [28,
29], whereby the threshold for rejecting a model is alterea iway that prevents
one from rejecting a model in the limit that one has verydigensitivity, but reverts
to the usual frequentist procedure when the sensitivitygh.hThis is achieved by
defining

Cls= P(Q> Qopgs+h) _ Psib
P(Q>Qobdb)  1—pp

The quantity Cls then is then used in place of tipevalue ps,p, i.€., thes+ b model

is rejected if one finds CL.< a. The ingredients are illustrated in Fig. 8(b).

One can understand qualitatively how this achieves theatbgpal by consider-
ing the case where the distributions@funder the two hypothesest- b andb are
close together. Suppose the observed valgig is such thatps, , is less tharo, so
that in the usual frequentist procedure we would rejectsthd hypothesis. In the
case of low sensitivity, however, the quantity-Ip, will also be small, as can be
seen from Fig. 8(a). Therefore the quantity Gidll be greater tharps,p such that
thes+ b model is not rejected by the criterion of Eq. (47).

If on the other hand the distributions are well separated, @4hs is such that
the ps;p < a, then py will also be small and the term-1 p, that appears in the
denominator of CLwill be close to unity. Therefore in the case with high sewiy,
using Cls is similar to what is obtained from the usual frequentistogaure based
on thep-value ps.p.

The largest value of not rejected by the Cdcriterion gives the corresponding
CLs upper limit. Here to follow the traditional notation we halescribed it in terms
of the mean number of signal evestsather than the strength parametgrbut it is
equivalent to using Cl.= py/(1— po) to find an interval foru.

The CLs procedure described above assumes that the test stQigticontinu-
ous. The recipe is slightly different if the data are diseretuch as a Poisson dis-
tributed number of events with a means+ b. In this case the quantity GLlis
defined as

(47)

P(n < nopgs+b)

Cls=
S P(n < Nopgb)

(48)
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wherengps is the number of events observed. Here the numeratay,is which the
same as in Eq. (47). Thevalue of the background-only hypothesigis= P(n >
Nobgb), but the denominator in Eq. (48) requiradess thanor equalto neps, SO
this is not exactly the same as-1py. Eq. (48) is the fundamental definition and it
reduces to the ratio gi-values for the case of a continuous test statistic.

For a Poisson distributed number of events, the @iper limit coincides exactly
with the Bayesian upper limit based on the flat prior as shawkig. 7(b). It is thus
also greater than or equal to the limit based on phealue and is in this sense
conservative. It also turns out that the £&And Bayesian limits (using a flat prior)
agree for the important case of Gaussian distributed d&fa [2

11 The look-elsewhere effect

Recently there has been important progress made on theepraifimultiple testing,
usually called in particle physics the “look-elsewhereeff [30, 31]. The problem
often relates to finding a peak in a distribution when the fsejadsition is not pre-
dicted in advance. In the frequentist approach usipgvalue, one must determine
the probability, under the background-only hypothesidirtd a peak as significant
as the one found more more so anywhere in the search region.

The “brute-force” solution to this problem involves gerterg data under the
background-only hypothesis and for each data set, fittingek f unknown posi-
tion and recording a measure of its significance. To estaklidiscovery one often
requires ap-value less than.9 x 10/, corresponding to ad effect. Thus deter-
mining this with Monte Carlo requires generating and fittatgenormous number
of experiments, perhaps several time$.10

In contrast, if the position of the peak were known in advarthen the fit to
the distribution would be much faster and easier, and fumloee one can in many
cases use formulae valid for sufficiently large samples blyaass completely the
need for Monte Carlo (see, e.g., [20]). But this “fixed-piasit p-value would not
be correct in general, as it assumes the position of the paaknown in advance.

Gross and Vitells [30] have described a method that allovestormodify thep-
value computed under assumption of a fixed position to olttesrcorrect value by
use of a relatively fast Monte Carlo calculation. Supposesastatistiay, defined
so that larger values indicate increasing disagreemeit thé data, is observed to
have a valual. Furthermore suppose the model contains a nuisance panaéhet
(such as the peak position) which is only defined under theasignodel (there is
no peak in the background-only model). An approximationtifier desired “global”
p-value is found to be

Pglobal = Plocal+ (Nu) (49)
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where piocal IS the p-value assuming a fixed value 6f(e.g., fixed peak position),
and(Ny) is the mean number of “upcrossings” of the the statiggiabove the level
uin the range of the nuisance parameter considered (e.gndke range).

The value of(Ny) can be estimated from the number of upcrossiigg) above
some much lower valuel, by using a relation due to Davis [35],

(Ny) ~ (Ny,)e (U-)/2, (50)

By choosingup sufficiently low, the value ofN,) can be estimated by simulating
only a very small number of experiments, rather than tHerE@ded if one is dealing
with a 50 effect.

Vitells and Gross also indicate how to extend the corredtiotine case of more
than one parameter, e.g., where one searches for a peakhofitkhiown position
and width, or for searching for a peak in a two-dimensionalcgp such as an astro-
physical measurement on the sky [31]. Here one may find sommeuof regions
where signal appears to be present, but within those regi@ne may be islands or
holes where the significance is lower. In the generalizatoomultiple dimensions,
the number of upcrossings of the test statigtjds replaced by the expectation of
a quantity called the Euler characteristic, which is roygdgpeaking the number of
disconnected regions with significant signal minus the nemalb ‘holes’.

It should be emphasized that an exact accounting of the étsdwhere effect
requires that one specify where else one looked, e.g., tlss raage in which a peak
was sought. But this may be have been defined in a somewhataybhanner, and
one might have included not only the mass range but otheabias that were also
inspected for peaks but where none was found. Thus it peri@pgorth expending
great effort on an exact treatment of the look-elsewherecgffas one would do in
the brute-force method mentioned above. Rather, the maily @dptained localp-
value can be reported along with an approximate correcti@etount for the range
of measurements in which the effect could have appeared.

12 Why 507

Common practice in HEP has been to regard an observed smhbealworthy of the
word “discovery” when its significance exceeds- 5, corresponding to a-value
of the background-only hypothesis 02« 10~7. This is in stark contrast to many
other fields (e.g., medicine, psychology) in whiclp&alue of 5% Z = 1.64) is
considered significant.

First, it is not clear that the same significance thresholukhbe used in all
cases. Whether one is convinced that a discovery is realdhake into account the
plausibility of the implied signal and how well it describéee data. If the discov-
ered phenomenon is a priori very unlikely, then more evigeisarequired to pro-
duce a given degree of belief that the new phenomenon efist€arl Sagan said,
“...extraordinary claims require extraordinary evidehi@9]. This follows directly
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from Bayes’ theorem (34), whereby the posterior probabdita hypothesis is pro-
portional to its prior probability. If an experimental rdscan only be explained by
phenomena that may not be impossible but neverthelessyhigipirobable (fifth
force, superluminal neutrinos), then we should demand hemigevel of statistical
significance.

Some phenomena, on the other hand, are regarded by the cayrasimuite
likely before they are observed experimentally. Most péetphysicists would have
bet on the Higgs boson well in advance of the direct expertel@vidence. As with
the Higgs, however, when a discovery is announced in HERugusilly something
fairly important and the cost of a false claim is perceivedéoquite high. Every
time the community endures a retracted discovery there éndency to think that
the threshold should be higher.

Another reason for the high five-sigma threshold is that tkgegmenter may
be unsure of the statistical model on which the reportediféigimce relies. To first
approximation one can think of the significaras the estimated size of the signal
divided by the standard deviati@nin the estimated background. Hezecharacter-
izes the level of random fluctuation in the background, ités,a statistical error. If
we have a systematic uncertainty in the background as velh toughly speaking
these should get added in quadrature. If an underestimaiarafystematic errors
would result in ourg being wrong by a factor of several, then a mere three-sigma
effect may be no real effect at all. The high threshold in taise thus compensates
for modeling uncertainty.

Another important issue is the look-elsewhere effect, whas discussed in
Sec. 11 it is difficult to define exactly where else one lookEukat is, should one
correct for the fact that the search histogram had 100 binalso for the fact that
one looked at 100 different histograms, or perhaps accauhé thousands of sci-
entists all carrying out searches? Surely in such a scesan@one will see a bump
in a histogram somewhere that appears significant. Sinseimpossible to draw
an unambiguous boundary around where one “looked”, therays remains a nag-
ging feeling that one’s correction for this effect may haeeb inadequate, hence
the desire for a greater margin of safety before announcitigavery.

The p-value, however, really only addresses the issue of whetliectuation in
the background-only model is likely to lead to data as digamnto background as
what was actually obtained. It is not designed to comperfsatgystematic errors
in the model, the cost of announcing a false discovery or thasiility of the
phenomena implied by the discovery. When a new phenomenoisdevéred, it
often emerges first as only marginally significant, thenéases to the point where
everyone is convinced. At first, everyone asks whether tipa@mt signal is just a
fluctuation. After a while, people stop asking that questibms obvious one has
seen something, the question is whether that is “new physican uncontrolled
systematic effect. Provided that the look-elsewhere effetmken into account in a
reasonable way, this transition probably takes place closthe three-sigma level,
in any case well beforg = 5.

Nevertheless, the 5-sigma threshold continues to be uskrtide when the word
“discovery” is appropriate. In future the HEP community shibperhaps think of
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better ways of answering the different questions that amisen searching for new
phenomena, since the statistical significance is really dakigned to say whether
the data, in the absence of a signal, is likely to have fluetlat manner at least as
extreme as what was observed. Lumping all of the issues oretiabove into the
p-value simply makes them more difficult to disentangle.

13 Conclusions

To search for new physical phenomena we need to be able tord#rate quan-
titatively that our data cannot be described using only km@roceesses. In these
lectures we have seen how statistical tests allow us to catrthis task. They pro-
vide a framework for rejecting hypotheses on the basis thatdata we observed
were uncharacteristic for them and more indicative of a@ratite explanation. Fre-
quentist statistical tests nevertheless prevent one fgkim@ directly certain seem-
ingly relevant questions, such as “what is the probabiligttmy theory is true?”.
Bayesian statistics does allow one to quantify such a degreelief, at the expense
of having to supply subjective prior probabilities. Theduentist and Bayesian ap-
proaches answer different but related questions and bettcdmable tools.

We did not have time to discuss in detail many other stasikigsues such as
Bayesian methods for establishing discovery, multivartathniques and more so-
phisticated means for improving the accuracy of statistiwadels through carefully
motivated nuisance parameters. These methods will no gidaypan important role
when the LHC enters its next data-taking phase.
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