
Statistics for Searches at the LHC

Glen Cowan

Abstract This chapter describes several topics in statistical data analysis as used

in High Energy Physics. It focuses on areas most relevant to analyses at the LHC

that search for new physical phenomena, including statistical tests for discovery

and exclusion limits. Particular attention is payed to the treatment of systematic

uncertainties through nuisance parameters.

1 Introduction

The primary goal of data analysis in High Energy Physics (HEP) is to test our un-

derstanding of particle interactions and in doing so to search for phenomena that

go beyond the existing framework of the Standard Model. These lectures describe

some of the basic statistical tools needed to do this.

Despite efforts to make the lectures self contained, some familiarity with ba-

sic ideas of statistical data analysis is assumed. Introductions to the subject can

be found, for example, in the reviews of the Particle Data Group [1] or in the

texts [2, 3, 4, 5, 6].

Brief reviews are given of probability in Sec. 2 and frequentist hypothesis tests in

Secs. 3 and 4. These are applied to establishing discovery and setting limits (Sec. 5)

and are extended using the profile likelihood ratio (Sec. 6), from which one can

construct unified intervals (Sec. 8). Bayesian limits are discussed in Sec. 9 and all

of the methods for limits are illustrated using the example of a Poisson counting

experiment in Sec. 10. Application of the standard tools for discovery and limits

leads to a number of difficulties, such as exclusion of models to which one has no

sensitivity (Sec. 11) and the look-elsewhere effect (Sec. 12). Section 13 illustrates

how the methods have been applied in the search for the Higgs boson. In Sec. 14
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we examine why one traditionally requires five-sigma significance to claim a dis-

covery and finally some conclusions are drawn in Sec. 15. The lectures as presented

at SUSSP also included material on unfolding or deconvolution of measured distri-

butions which is not included here but can be found in Ref. [7] and Chapter 11 of

Ref. [2].

2 Review of probability

When analyzing data in particle physics one invariably encounters uncertainty, at

the very least coming from the intrinsically random nature of quantum mechanics.

These uncertainties can be quantified using probability, which was defined by Kol-

mogorov [8] using the language of set theory. Suppose a set S contains elements

that can form subsets A, B, . . .. As an example, the elements may represent possible

outcomes of a measurement but here we are being abstract and we do not need to

insist at this stage on a particular meaning. The three axioms of Kolmogorov can be

stated as

1. For all A ⊂ S, there is a real-valued function P, the probability, with P(A)≥ 0;

2. P(S) = 1;

3. If A∩B = /0, then P(A∪B) = P(A)+P(B).

In addition we define the conditional probability of A given B (for P(B) 6= 0) as

P(A|B) = P(A∩B)

P(B)
. (1)

From these statements we can derive the familiar properties of probability. They do

not, however, provide a complete recipe for assigning numerical values to probabil-

ities nor do tell us what these values mean.

Of the possible ways to interpret a probability, the one most commonly found in

the physical sciences is as a limiting frequency. That is, we interpret the elements

of the sample space as possible outcomes of a measurement, and we take P(A) to

mean the fraction of times that the outcome is in the subset A in the limit where we

repeat the measurement an infinite number of times under “identical” conditions:

P(A) = lim
n→∞

times outcome is in A

n
. (2)

Use of probability in this way leads to what is called the frequentist approach

to statistics. Probabilities are only associated with outcomes of repeatable obser-

vations, not to hypothetical statements such as “supersymmetry is true”. Such a

statement is either true or false, and this will not change upon repetition of any

experiment.

Whether SUSY is true or false is nevertheless uncertain and we can quantify

this using probability as well. To define what is called subjective probability one
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interprets the elements of the set S as hypotheses, i.e., statements that are either true

or false, and one defines

P(A) = degree of belief that A is true. (3)

Use of subjective probability leads to what is called Bayesian statistics, owing to its

important use of Bayes’ theorem described below.

Regardless of its interpretation, any quantity that satisfies the axioms of proba-

bility must obey Bayes’ theorem, which states

P(A|B) = P(B|A)P(A)
P(B)

. (4)

This can be derived from the definition of conditional probability (1), which we can

write as P(A∩B) = P(B)P(A|B), or equivalently by changing labels as P(B∩A) =
P(A)P(A|B). These two probabilities are equal, however, because A∩B and B∩A

refer to the same subset. Equating them leads directly to Eq. (4).

In Bayes’ theorem (4) the condition B represents a restriction imposed on the

sample space S such that anything outside of B is not considered. If the sample

space S can be expressed as the union of some disjoint subsets Ai, i = 1,2, . . ., then

the factor P(B) appearing in the denominator can be written P(B) =∑i P(B|Ai)P(Ai)
so that Bayes’ theorem takes on the form

P(A|B) = P(B|A)P(A)
∑i P(B|Ai)P(Ai)

. (5)

In Bayesian (as opposed to frequentist) statistics, one uses subjective probability

to describe one’s degree of belief in a given theory or hypothesis. The denominator

in Eq. (5) can be regarded as a constant of proportionality and therefore Bayes’

theorem can be written as

P(theory|data) ∝ P(data|theory)P(theory) , (6)

where “theory” represents some hypothesis and “data” is the outcome of the experi-

ment. Here P(theory) is the prior probability for the theory, which reflects the exper-

imenter’s degree of belief before carrying out the measurement, and P(data|theory)
is the probability to have gotten the data actually obtained, given the theory, which

is also called the likelihood.

Bayesian statistics provides no fundamental rule for obtaining the prior prob-

ability; in general this is subjective and may depend on previous measurements,

theoretical prejudices, etc. Once this has been specified, however, Eq. (6) tells how

the probability for the theory must be modified in the light of the new data to give

the posterior probability, P(theory|data). As Eq. (6) is stated as a proportionality,

the probability must be normalized by summing (or integrating) over all possible

hypotheses.
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3 Hypothesis tests

One of the fundamental tasks in a statistical analysis is to test whether the predic-

tions of a given model are in agreement with the observed data. Here we will use

x to denote the outcome of a measurement; it could represent a single quantity or a

collection of values. A hypothesis H means a statement for the probability to find

the data x (or if x includes continuous variables, H specifies a probability density

function or pdf). We will write P(x|H) for the probability to find data x under as-

sumption of the hypothesis H.

Consider a hypothesis H0 that we want to test (we will often call this the “null”

hypothesis) and an alternative hypothesis H1. In frequentist statistics one defines a

test of H0 by specifying a subset of the data space called the critical region, w, such

that the probability to observe the data there satisfies

P(x ∈ w|H0)≤ α . (7)

Here α is a constant specified before carrying out the test, usually set by convention

to a small value such as 5%. For continuous data, one takes the relation above as

an equality. If the data are discrete, such as a number of events, then there may not

exist any subset of the data values whose summed probability is exactly equal to α ,

so one takes the critical region to have a probability up to α . The critical region w

defines the test. If the data are observed in w then the hypothesis H0 is rejected.

Up to this point the sole defining property of the test is Eq. (7), which states that

the probability to find the data in the critical region is not more than α . But there

are in general many if not an infinite number of possible subsets of the data space

that satisfy this criterion, and it is not clear which should be taken as the critical

region. This is where the alternative hypothesis H1 comes into play. One would like

the critical region to be chosen such that there is as high a probability as possible to

find the data there if the alternative is true, while having only the fixed probability

α assuming H0, as illustrated schematically in Fig. 1.

x

f(
x|

H
)

critical region
)

0
f(x|H

)
1

f(x|H

α
Fig. 1 Illustration of the critical region of
a statistical test (see text).
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Rejecting the hypothesis H0 if it is in fact true is called a type I error. By con-

struction the probability for this to occur is the size of the test, α . If on the other

hand we do not reject H0 but we should have, because the alternative H1 was true,

then this is called a type II error. The probability to reject the null hypothesis if the

alternative H1 is true is called the power of the test with respect to H1, which is one

minus the probability of a type II error.

A significance test of a hypothesis H is closely related to the tests described

above. Suppose a measurement results in data x (a single number or a collection of

many values) for which the hypothesis H predicts the probability P(x|H). We ob-

serve a single instance of x, say, xobs, and we want to quantify the level of agreement

between this outcome and the predictions of H.

To do this the analyst must specify what possible data values would constitute a

level of incompatibility with H that is equal to are greater than that between H and

the observed data xobs. Once this is given, then one computes the p-value of H as

the probability, under assumption of H, to find data in this region of equal or greater

incompatibility.

When computing the p-value there is clearly some ambiguity as to what data

values constitute greater incompatibility with H than others. When we say that a

given x has less compatibility with H, we imply that it has more compatibility with

some alternative hypothesis. This is analogous to the ambiguity we encountered in

determining the critical region of a test.

We can see this connection more directly by using the p-value to specify the

critical region for a test of H0 of size α as the set of data values that would have

a p-value less than or equal to α . The resulting test will have a certain power with

respect to any given alternative H1, although these may not have been used explicitly

when constructing the p-value.

In a frequentist test, we reject H0 if the data are found in the critical region, or

equivalently, if the p-value of H0 is found less or equal to α . Despite this language,

it is not necessarily true that we would would then believe H0 to be false. To make

this assertion we should quantify our degree of belief about H0 using subjective

probability as described above, and it must be computed using Bayes’ theorem:

P(H0|x) =
P(x|H0)π(H0)

∑i P(x|Hi)π(Hi)
. (8)

As always, the posterior P(H0|x) is proportional to the prior π(H0), and this would

need to be specified if we want to express our degree of belief that the hypothesis is

true.

It is also important to note that the p-value of a hypothesis H0 is not the same as

the probability (8) that it is true, but rather the probability, under assumption of H0,

to find data with at least as much incompatibility with H0 as the data actually found.

The p-value thus does not depend on prior probabilities.

For most of these lectures we will stay within the frequentist framework. The

result of our analysis will be a p-value for the different models considered. If this is

less than some specified value α , we reject the model.
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Often the p-value is translated into an equivalent quantity called the significance,

Z, defined by

Z = Φ−1(1− p) . (9)

Here Φ is the cumulative standard Gaussian distribution (zero mean, unit variance)

and Φ−1 is its inverse function, also called the quantile of the standard Gaussian.

The definition of significance is illustrated in Fig. 2(a) and the significance versus

p-value is shown in Fig. 2(b). Often a significance of Z = 5 is used as the threshold

for claiming discovery of a new signal process. This corresponds to a very low p-

value of 2.9×10−7 for the no-signal hypothesis. The rationale for using such a low

threshold is discussed further in Sec. 14.

Although we can simply take Eq. (9) as our defining relation for Z, it is useful to

compare to the case of measuring a quantity x that follows a Gaussian distribution

with unknown mean µ . Suppose we want to test the hypothesis µ = 0 against the

alternative µ > 0. In this case we would take the critical region of the test to contain

values of x greater than a certain threshold, or equivalently, we would define the

p-value to be the probability to find x as large as we found or larger. In this case the

significance Z is simply the value of x observed, measured in units of its standard

deviation σ . For this reason one often refers to finding a significance Z of, say, 2.0

as a two-sigma effect.
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Fig. 2 (a) Illustration of the definition of significance Z and (b) the significance as function of the
p-value.

4 Choice of critical region, test statistics

We now examine more closely the question of how best to define the critical region

of a test and for this suppose we want to select a sample of events of a desired type
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(signal, denoted s) and reject others that we do not want (background, b). That is, for

each event we will measure some set of quantities x, which could represent different

kinematic variables such as the missing energy, number of jets, number of muons,

and so forth. Then for each event carry out a test of the background hypothesis, and

if this is rejected it means we select the event as a candidate signal event.

Suppose that the s and b hypotheses imply probabilities for the data of P(x|s)
and P(x|b), respectively. Figures 3(a – c) show these densities for two components

of the data space along with possible boundaries for the critical region.
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(a) (b) (c)

Fig. 3 Scatter plots of two variables corresponding to two hypotheses: background (H0) and signal
(H1). The critical region for a test of H0 could be based, e.g., on (a) cuts, (b) a linear boundary, (c)
a nonlinear boundary.

Figure 3(a) represents what is commonly called the ‘cut-based’ approach. One

selects signal events by requiring x1 < c1 and x2 < c2 for some suitably chosen cut

values c1 and c2. If x1 and x2 represent quantities for which one has some intuitive

understanding, then this can help guide one’s choice of the cut values.

Another possible decision boundary is made with a diagonal cut as shown in

Fig. 3(b). One can show that for certain problems a linear boundary has optimal

properties, but in the example here, because of the curved nature of the distributions,

neither the cut-based nor the linear solution is as good as the nonlinear boundary

shown in Fig. 3(c).

The decision boundary is a surface in the n-dimensional space of input variables,

which can be represented by an equation of the form y(x) = ycut, where ycut is some

constant. We accept events as corresponding to the signal hypothesis if they are on

one side of the boundary, e.g., y(x)≤ ycut could represent the acceptance region and

y(x)> ycut could be the rejection region.

Equivalently we can use the function y(x) as a scalar test statistic. Once its func-

tional form is specified, we can determine the pdfs of y(x) under both the signal

and background hypotheses, p(y|s) and p(y|b). The decision boundary is now ef-

fectively a single cut on the scalar variable y, as illustrated in Fig. 4.

We would like to design a test to have a high probability to reject a hypothesis if it

is false, which is what we have called the power of the test. Unfortunately a test with

maximum power with respect to one alternative will not be optimal with respect to

others, so there is no such thing as an ideal “model-independent” test. Nevertheless,

for a specific pair of signal and background hypotheses, it turns out that there is a
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Fig. 4 Distributions of the scalar test
statistic y(x) under the signal and back-
ground hypotheses.

well defined optimal solution to our problem. The Neyman–Pearson lemma (see,

e.g., Ref. [9]) states that for a test of a given significance level of the background

hypothesis (i.e., fixed background efficiency), one obtains the maximum power rela-

tive to the signal hypothesis (signal efficiency) by defining the critical region w such

that for x ∈ w the likelihood ratio, i.e., the ratio of pdfs for signal and background,

y(x) =
f (x|s)
f (x|b) , (10)

is greater than or equal to a given constant, and it is less than this constant ev-

erywhere outside the critical region. This is equivalent to the statement that the

ratio (10) represents the test statistic with which one obtains the highest signal effi-

ciency for a given background efficiency.

In principle the signal and background theories should allow us to work out the

required functions f (x|s) and f (x|b), but in practice the calculations are too difficult

and we do not have explicit formulae for these. What we have instead of f (x|s)
and f (x|b) are complicated Monte Carlo programs, from which we can sample x

to produce simulated signal and background events. Because of the multivariate

nature of the data, where x may contain at least several or perhaps even hundreds of

components, it is a nontrivial problem to construct a test with a power approaching

that of the likelihood ratio.

In the usual case where the likelihood ratio (10) cannot be used explicitly,

there exist a variety of other multivariate classifiers such as neural networks,

boosted decision trees and support vector machines that effectively separate dif-

ferent types of events. Descriptions of these methods can be found, for exam-

ple, in the textbooks [10, 11, 12, 13], lecture notes [14] and proceedings of the

PHYSTAT conference series [15]. Software for HEP includes the TMVA [16] and

StatPatternRecognition [17] packages.
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5 Frequentist treatment of discovery and limits

The use of a statistical test to in a Particle Physics analysis involving different event

types comes up in different ways. Sometimes both event classes are known to exist,

and the goal is to select one class (signal) for further study. For example, top-quark

production in proton–proton collisions is a well-established process. By selecting

these events one can carry out precise measurements of the top quark’s properties

such as its mass. This was the basic picture in the previous section. The measured

quantities referred to individual events, and we tested the the hypothesized event

type for each.

In other cases, the signal process could represent an extension to the Standard

Model, say, supersymmetry, whose existence is not yet established, and the goal of

the analysis is to see if one can do this. Here we will imagine the “data” as repre-

senting not individual events but a sample of events, i.e., an entire “experiment”. If

the signal process we are searching for does not exist, then our sample will consist

entirely of background events, e.g., those due to Standard Model processes. If the

signal does exist, then we will find both signal and background events. Thus the

hypothesis we want to test is

H0 : only background processes exist

versus the alternative

H1 : both signal and background exist.

We will refer to the hypothesis H0 as the background-only model (or simply “b”)

and the alternative H1 as the signal-plus-background model, s+ b. The Neyman-

Pearson lemma still applies. In a test of H0 of a given size, the highest power rel-

ative to H1 is obtained when the critical region contains the highest values of the

likelihood ratio L(H1)/L(H0). Here, however, the likelihood is the probability for

the entire set of data from the experiment, not just for individual events.

Rejecting H0 means in effect discovering a new phenomenon. Of course before

we believe that we have made a new discovery, a number of other concerns must

be addressed, such as our confidence in the reliability of the statistical models used,

the plausibility of the new phenomenon and the degree to which it can describe the

data. Here however we will simply focus on question of statistical significance and

in effect equate “rejecting the background-only hypothesis” with “discovery”. Often

in HEP one claims discovery when the p-value of the background-only hypothesis

is found below 2.9× 10−7, corresponding to a 5-sigma effect. We will revisit the

rationale behind this threshold in Sec. 14.

Even if one fails to discover new physics by rejecting the background-only

model, one can nevertheless test various signal models and see whether they are

compatible with the data. Signal models are usually characterized by some continu-

ous parameters representing, e.g., the masses of new particles. If we carry out a test

of size α for all possible values of the parameters, then those that are not rejected
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constitute what is called a confidence region for the parameters with a confidence

level of CL = 1−α . By construction a hypothesized point in parameter space will,

if it is true, be rejected with probability α . Therefore the confidence region will

contain the true value of the parameters with probability 1−α . For purposes of

confidence limits one typically uses a test of size α = 0.05, which is to say the

regions have a confidence level of 95%.

If the problem has only one parameter, then the region is called a confidence

interval. An important example is where a parameter µ is proportional to the cross

section for the signal process whose existence is not yet established. Here one often

wants to test a hypothetical value relative to the alternative hypothesis that the signal

does not exist, i.e., µ = 0. The critical region of the test is then taken have higher

probability for the lower values of the parameter.

For example, suppose the data consist of a value x that follows a Gaussian distri-

bution with unknown mean µ and known standard deviation σ . If we test a value µ
relative to the alternative of a smaller value, then the critical region will consist of

values of x < c for some constant c such that

α =

∫ c

−∞

1√
2πσ

e−(x−µ)2/2σ2

dx = Φ

(

c−µ

σ

)

, (11)

or

c = µ −σΦ−1(1−α) . (12)

If we take, e.g., α = 0.05, then the factor Φ−1(1−α) = 1.64 says that the critical

region starts at 1.64 standard deviations below the value of µ being tested. If x is

observed any lower than this, then the corresponding µ is rejected.

Equivalently we can take the p-value of a hypothesized µ , pµ , as the probability

to observe x as low as we found or lower, and we then reject µ if we find pµ ≤ α .

The highest value of µ that we do not reject is called the upper limit of µ at a

confidence level of 1−α , and we will write this here as µup Lower limits µlo can

of course be constructed using an analogous procedure. In practice these points are

found by setting pµ = α and solving for µ . There are a number of subtle issues

connected with limits derived in this way and we will return to these in Sec. 11.

5.1 A toy example

Consider an experiment where we measure for each selected event two quantities,

which we can write as a vector x = (x1,x2). Suppose that for background events x

follows

f (x|b) = 1

ξ1
e−x/ξ1

1

ξ2
e−x/ξ2 , (13)

and for a certain signal model they follow
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f (x|s) =C
1√

2πσ1

e−(x1−µ1)
2/2σ2

1
1√

2πσ2

e−(x2−µ2)
2/2σ2

2 , (14)

where x1 ≥ 0, x2 ≥ 0 and C is a normalization constant. The distribution of events

generated according to these hypotheses are shown in Fig. 5(a).
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Fig. 5 (a) Distributions of x = (x1,x2) for events of type signal (red circles) and background (blue
triangles) shown with a contour of constant likelihood ratio; (b) the distribution of the statistic q
for signal and background events.

First, suppose that the signal and background both correspond to event types that

are known to exist and the goal is simply to select signal. In this case we can exploit

the Neyman-Pearson lemma and base the selection on the likelihood ratio

y(x) =
f (x|s)
f (x|b) . (15)

We can define the same critical region by using any monotonic function of the like-

lihood ratio, and in this case it is useful to take

q =

(

x1 −µ1

σ1

)2

+

(

x2 −µ2

σ2

)2

− 2x1

ξ1
− 2x2

ξ2
=−2lny(x)+ const. (16)

Distributions of the statistic q for the background and signal hypotheses (13) and

(14) are shown in Fig. 5(b). This shows that a sample enhanced in signal events can

be selected by selecting events with q less than a given threshold, say, qcut.

Now suppose instead that the signal process is not known to exist and the goal

of the analysis is to search for it. Suppose that the expected numbers events are b of

background s for a given signal model. For now assume that the model’s prediction

for both of these quantities can be determined with negligible uncertainty. The the

actual number of events n that we find can be modeled as a Poisson distributed
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quantity whose mean we can write as µs+b, where µ is a parameter that specifies

the strength of the signal process. That is, the probability to find n events is

P(n|µ) = (µs+b)n

n!
e−(µs+b) . (17)

The values of x follow a pdf that is a mixture of the two contributions from signal

and background,

f (x|µ) = µs

µs+b
f (x|s)+ b

µs+b
f (x|b) , (18)

where the coefficients of each component give the fraction of events of each type.

The complete measurement thus consists of selecting n events and for each one

measuring the two-dimensional vector quantity x. The full likelihood is therefore

L(µ) = P(n|µ)
n

∏
i=1

f (xi|µ) =
e−(µs+b)

n!

n

∏
i=1

[µs f (xi|s)+b f (xi|b)] . (19)

We can now carry out tests of different hypothetical values of µ . To establish the

existence of the signal process we try to reject the hypothesis of the background-

only model, µ = 0. Regardless of whether we claim discovery we can set limits on

the signal strength µ , which we examine further in Sec. 11.

Let us first focus on the question of discovery, i.e., a test of µ = 0. If the signal

process exists, we would like to maximize the probability that we will discover it.

This means that the test of the background-only (µ = 0) hypothesis should have

as high a power as possible relative to the alternative that includes signal (µ =
1). According to the Neyman-Pearson lemma, the maximum power is achieved by

basing the test on the likelihood ratio L(1)/L(0), or equivalently on the statistic

Q =−2ln
L(1)

L(0)
= 2s−2

n

∑
i=1

ln

(

1+
s

b

f (xi|s)
f (xi|b)

)

. (20)

The term 2s in front of the sum is a constant and so only shifts the distribution of Q

for both hypotheses equally; it can therefore be dropped.

The other terms on the right-hand side of Eq. (20) are a sum of contributions

from each event, and because the x values follow the same distribution for each

event, each term in the sum follows the same distribution. To find the pdf of Q we

can exploit the fact that the distribution of a sum of random variables is given by the

convolution of their distributions. The full distribution can therefore be determined

using Fourier transform techniques from the corresponding single-event distribu-

tions; details can be found in Ref. [18].

Following our toy example, suppose we take the expected numbers of events to

be b = 100 for background and s = 20 for signal. The distribution of the statistic Q

is found in this case simply by generating experiments according to the µ = 0 and

µ = 1 hypotheses, computing Q for each according to Eq. (20) and recording the

values in histograms. This results in the distributions shown in Fig. 6(a).
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Fig. 6 (a) Distribution of the statistic Q assuming s = 20 and b = 100 under both the background-
only (µ = 0) signal-plus-background (µ = 1) hypotheses; (b) same as in (a) but with b treated as
having an uncertainty of σb = 20 (see text).

To establish discovery of the signal process, we use the statistic Q to test the

hypothesis that µ = 0. As the test statistic is a monotonic function of the likelihood

ratio L(1)/L(0), we obtain maximum power relative to the alternative of µ = 1.

The p-vale of µ = 0 is computed as the area below Qobs in Fig. 6, i.e. p0 = P(Q ≤
Qobs|0), because here lower Q corresponds to data more consistent with a positive

µ (e.g., µ = 1). The p-value can be converted into a significance Z using Eq (9) and

if this is greater than a specific threshold (e.g., 5.0) then one rejects the background-

only hypothesis.

To set limits on µ we can use the statistic

Qµ =−2ln
L(µ)

L(0)
, (21)

defined such that the special case Q1 is the same as the statistic Q used above for dis-

covery. This will provide maximum power in a test of µ relative to the background-

only alternative. The distribution of Q is also shown in Fig. 6 for µ = 1. The p-value

of the µ = 1 hypothesis is given by the area above the observed value Qobs, since

higher values of Q are more consistent with the alternative of µ = 0. This is shown

here for the special case of µ = 1 but one can repeat the procedure using f (Qµ |µ)
for any other value of µ and compute the p-value pµ in the analogous manner. To

find the upper limit one would carry out the analysis as described above for all val-

ues of µ and reject those that have pµ < α for, say α = 0.05. The highest value of

µ not rejected is then the upper limit at 95% C.L.
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5.2 Systematic uncertainties and nuisance parameters

Until now we have treated the expected number of background events b as known

with negligible uncertainty. In practice, of course, this may not be true and so we

may need to regard b as an adjustable parameter of our model. That is, we regard

Eq. (19) as giving L(µ ,b), where µ is the parameter of interest and b is a nuisance

parameter.

There are several ways of eliminating the nuisance parameters from the problem.

First we consider a method that is essentially frequentist but contains a Bayesian

aspect. From the standpoint of nuisance parameters this is essentially the same as

what is done in the purely Bayesian limits as discussed in Sec. 9. An alternative

frequentist treatment using the profile likelihood is described in Sec. 6.

Consider first the frequentist method with Bayesian treatment of nuisance param-

eters. Our degree of belief about the true value of the parameter may be described

in a Bayesian sense by a prior pdf π(b) and our best estimate of b (e.g., the mean

of π(b)) may be a value b̃. As an example, π(b) could be a Gaussian distribution

centred about b̃ with a standard deviation σb:

π(b) =
1√

2πσb

e−(b−b̃)2/2σ2
b . (22)

In fact a Gaussian pdf for b may not be the most appropriate model, e.g., if a pa-

rameter is bounded to be positive or if the prior should be characterized by longer

positive tail. As an alternative one may use a Gaussian distribution for lnb, which is

to say that the pdf for b is log-normal.

Using the pdf π(b) we can construct what is called the marginal (or prior predic-

tive) likelihood,

Lm(n,x1, . . . ,xn|µ) =
∫

L(n,x1, . . . ,xn|µ ,b)π(b)db , (23)

where in the notation above we have emphasized that the likelihood of a model is

the probability for the data under assumption of that model.

Notice that the marginal model does not represent the probability of data that

would be generated if we were really to repeat the experiment. In that case we

would not know the true value of b, but we could at least assume it would not

change under repetition of the experiment. Rather, the marginal model represents a

situation in which every repetition of the experiment is carried out with a new value

of b randomly sampled from π(b). It is in effect an average of models each with a

given b, where the average is carried out with respect to the density π(b).
For our tests we can use the same test statistic Q as before, but now we need

to know its distribution under assumption of the prior predictive model. That is, if

b is known exactly then we obtain distributions f (Q|µ ,b) such as those shown in

Fig. 6(a). What we want instead is the distribution based on data that follows the

marginal model,
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fm(Q|µ) =
∫

f (Q|µ ,b)π(b)db . (24)

Although it may not be obvious how to compute this integral, it can be done easily

with Monte Carlo by generating a value of b according to π(b), then using this

value to generate the data n, x1, . . . ,xn, and with these we find a value of Q which is

recorded in a histogram. By repeating the entire procedure a large number of times

we obtain distributions as shown in Fig. 6(b), which are generated with a Gaussian

prior for b with b̃ = 100 and σb = 20.

As can be seen in Fig. 6, the effect of the uncertainty on b broadens the distri-

butions of Q such that the p-values for both hypotheses are increased. That is, one

may be able to reject one or the other hypothesis in the case where b was known be-

cause the p-value may be found less than α . When the uncertainty in b is included,

however, the p-values may no longer allow one to reject the model in question.

As a further step one could consider using the marginal likelihood as the basis of

the likelihood ratio used in the test statistic, i.e., we take Q =−2ln(Lm(1)/Lm(0)).
Use of a different statistic simply changes the critical region of the test and thus al-

ters the power relative to the alternative models considered. This step by itself, how-

ever, does not take into account the uncertainty in b and it will not result in a broad-

ening of f (Q|µ) and an increase in p-values as illustrated above. This is achieved

by generating the distribution of Q using the marginal model through Eq. (24). In

practice the marginal likelihoods can be very difficult to compute and a test statistic

based on their ratio is not often used in HEP (see, however, Ref. [19]).

The ratio of marginal likelihoods is also called the Bayes factor, usually written

with indices to denote the hypotheses being compared, e.g.,

B10 =
Lm(1)

Lm(0)
. (25)

This is by itself a quantity of interest in Bayesian statistics as it represents the ratio

of posterior probabilities of the hypotheses µ = 1 and µ = 0 in the special case

where the prior probabilities are taken equal. If the Bayes factor is greater than one

it means that the evidence from the data results in an increase in one’s belief in the

hypothesis µ = 1 over µ = 0. Further discussion on the use of Bayes factors can be

found in Refs. [1, 20].

Another possibility is to construct the test statistic from the ratio of profile like-

lihoods. Suppose the likelihood depends on a parameter of interest µ and nuisance

parameters θ = (θ1, . . . ,θN). The profile likelihood Lp is defined as

Lp(µ) = L(µ , ˆ̂θ(µ)) , (26)

where
ˆ̂θ(µ), called the profiled values of the nuisance parameters θ , are the values

that maximizes L(µ ,θ) for the specified value of µ . Thus the profile likelihood only

depends on µ . Searches at the Tevatron (e.g., Ref. [21]) have used the statistic

Q =−2ln
Lp(1)

Lp(0)
. (27)
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As mentioned above, use of this statistic does not in itself take into account the sys-

tematic uncertainties related to the nuisance parameters. In Ref. [21] this has been

done by generating the distribution of Q using the marginal model (23). An alterna-

tive to this procedure is to construct the statistic from a different profile likelihood

ratio as described in Sec. 6.

6 Tests based on the profile likelihood ratio

Suppose as before that the parameter of interest is µ and the problem may contain

one or more nuisance parameters θ . An alternative way to test hypothetical values

of µ is to use the profile likelihood ratio,

λ (µ) =
Lp(µ)

L(µ̂, θ̂)
, (28)

where Lp is the profile likelihood defined in Eq. (26) and µ̂ and θ̂ are the values of

the parameters that maximize the likelihood. In some models it may be that µ can

only take on values in a restricted range, e.g., µ ≥ 0 if this parameter is proportional

to the cross section of the signal process. In this case we can, however, regard µ̂ as

an effective estimator that is allowed to take on negative values. This will allow us

to write down simple formulae for the distributions of test statistics that are valid in

the limit where the data sample is very large.

The quantity λ (µ) is defined so that it lies between zero and one, with higher

values indicating greater compatibility between the data and the hypothesized value

of µ . We can therefore use λ (µ) to construct a statistic to test different values of µ .

Suppose as above that µ is proportional to the rate of the sought after signal process

and we want to test the background-only (µ = 0) hypothesis.

Often the signal process is such that only positive values of µ are regarded as

relevant alternatives. In this case we would choose the critical region of our test

of µ = 0 to correspond to data outcomes characteristic of positive µ , that is, when

µ̂ > 0. It could happen that we find µ̂ < 0, e.g., if the total observed number of events

fluctuates below what is expected from background alone. Although a negative µ̂
indicates a level of incompatibility between the data and hypothesis of µ = 0, this

is not the type of disagreement that we want to exploit to declare discovery of a

positive signal process.

Providing our signal models are of the type described above, we can take the

statistic used to test µ = 0 as

q0 =

{−2lnλ (0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(29)

where λ (0) is the profile likelihood ratio for µ = 0 as defined in Eq. (28). In this

way, higher values of q0 correspond to increasing disagreement between data and
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hypothesis, and so the p-value of µ = 0 is the probability, assuming µ = 0 to find

q0 at least high or higher than the observed value.

If we are interested in an upper limit for the parameter µ , then we want the critical

region to correspond to data values characteristic of the alternative µ = 0. This can

be achieved by defining

qµ =

{−2lnλ (µ) µ̂ ≤ µ ,

0 µ̂ > µ .
(30)

For both discovery and upper limits, therefore, the p-value for a hypothesized µ is

then

pµ =
∫ ∞

qµ ,obs

f (qµ |µ ,θ)dqµ , (31)

If we use the statistic qµ then we find the upper limit µup at confidence level 1−α by

setting pµ = α and solving for µ . This will have the property P(µup ≥ µ)≥ 1−α .

Note that the p-value pertains to the hypothesis of not only of µ but also the nuisance

parameters θ . We will return to this point below.

To find the p-value we need the distribution of the test statistic under assumption

of the same µ being tested. For sufficiently large data samples one can show that this

distributions approaches an asymptotic form related to the chi-square distribution,

where the number of degrees of freedom is equal to the number of parameters of

interest (in this example just one, i.e., µ). The asymptotic formulae are based on

theorems due to Wilks [22] and Wald [23] and are described in further detail in

Ref. [24].

An important advantage of using the profile likelihood ratio is that its asymptotic

distribution is independent of the nuisance parameters, so we are not required to

choose specific values for them to compute the p-value. In practice one has of course

a finite data sample and so the asymptotic formulae are not exact. Therefore the p-

values will in general depend on the nuisance parameters to some extent.

Providing the conditions for the asymptotic approximations hold, one finds a very

simple formula for the p-value,

pµ = Φ
(√

qµ

)

, (32)

where Φ is the cumulative distribution of the standard Gaussian. From Eq. (9) we

find for the corresponding significance

Zµ =
√

qµ . (33)

For discovery, we could require Z0 greater than some threshold such as 5.0, which

corresponds to p0 < 2.9×10−7. When setting limits one usually excludes a param-

eter value if its p-value is less than, say, 0.05, corresponding to a confidence level

of 95%, or a significance of 1.64. Although Eqs. (32) and (33) are only exact for an

infinitely large data sample, the approach to the asymptotic limit is very fast and the
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approximations often turn out to be valid for moderate or even surprisingly small

data samples. Examples can be found in Ref. [24].

For data samples not large enough to allow use of the asymptotic formulae, one

must determine the distribution of the test statistics by other means, e.g., with Monte

Carlo models that use specific values for the nuisance parameters. In the exact fre-

quentist approach we would then only reject a value of µ if we find its p-value less

than α for all possible value of the nuisance parameters. Therefore only a smaller

set of µ values are rejected and the resulting confidence interval becomes larger,

which is to say the limits on µ become less stringent. The confidence interval then

overcovers, i.e., its probability to contain the true µ is greater than 1−α , at least for

some values of the nuisance parameters.

It may seem unfortunate if we cannot reject values of µ that are retained only

under assumption of nuisance parameter values that may be highly disfavoured, e.g.,

for theoretical reasons. A compromise solution is test µ using the p-value based only

on the profiled values of the nuisance parameters, i.e., we take

pµ =

∫ ∞

qµ ,obs

f (qµ |µ , ˆ̂θ(µ))dqµ . (34)

This procedure has been called profile construction [25] in HEP or hybrid resam-

pling [26, 27] amongst statisticians. If the true values of of the nuisance parameters

are equal to the profiled values, then the coverage probability of the resulting con-

fidence interval for µ is exact. For other values of θ the interval for µ may over-

or undercover. In cases where it this is crucial one may include a wider range of

nuisance parameter values and study the coverage with Monte Carlo.

7 Summary on likelihood ratios

Above we have seen two closely related ways to construct tests based on likeli-

hood ratios and also two different ways of incorporating systematic uncertainties. In

Sec. 5 we used the ratio of two simple hypotheses, namely L(µ)/L(0), whereas in

Sec. 6 the statistic used was L(µ)/L(µ̂).
If there are no nuisance parameters in the model, then the Neyman-Pearson

lemma guarantees that the ratio L(µ)/L(0) provides the greatest power in a test

of µ = 0 with respect to the alternative of µ . If there are nuisance parameters then

this will not in general hold. In this case one can replace the likelihood L by the

marginal or profile likelihood, which results in a different critical region for the test.

It can be difficult find the exact power for different alternatives but one can study

this using Monte Carlo. The important point is that by changing the critical region

of the test by using a ratio of marginal or profile likelihoods one does not by this

step alone account for the systematic uncertainties.

To include the uncertainties reflected by the nuisance parameters into the test we

have also seen two approaches. One has been to construct the marginal (prior pre-

dictive) model (23) to determine the distribution of the test statistic. If, for example,
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one rejects the hypothesis µ = 0, then the model rejected represents an average of

models corresponding to different values of the nuisance parameters. This is the ap-

proach we used together with the likelihood ratio L(µ)/L(0) (with or without the

marginal or profile likelihoods in the ratio).

In contrast to this, when we used the statistic based on the profile likelihood ratio

L(µ , ˆ̂θ)/L(µ̂, θ̂) we exploited the fact that its distribution becomes independent of

the nuisance parameters in the large sample limit. In this case we are able to say

that if µ = 0 is rejected, then this holds for all values of the nuisance parameters

θ . The large-sample distributions based on Wilks’ theorem are only valid when the

likelihood ratio is constructed in this way; this is not the case, e.g., if one were to

characterize nuisance parameters with a prior and then marginalize (integrate).

In a real analysis the data sample is finite and so the p-values for the parameter

of interest µ will depend at some level on the nuisance parameters θ . In such a case

one may then use their profiled values
ˆ̂θ under assumption of the value of µ being

tested. If these are equal to the true values of the nuisance parameters, then the p-

values for µ will be correct and a confidence interval for µ will cover the true value

with a probability equal to the nominal confidence level 1−α . If the true values of

θ are not equal to the profiled values, then the p-values may be too high or to low,

which is to say that confidence intervals for µ may be to large or too small.

Both types of likelihood ratios and more importantly, both methods for deter-

mining their sampling distributions (averaged or not) are widely used. For many

analyses they will lead to very similar conclusions. An important advantage of the

profile likelihood ratio is that one can say what set of physical models have been

rejected (i.e., what points in nuisance parameter space). If necessary, Monte Carlo

studies can be carried out to obtain the p-values using nuisance parameters in some

region about their profiled values
ˆ̂θ(µ).

8 Unified intervals

The test of µ used for an upper limit assumes that the relevant alternative hypothesis

is µ = 0, and the critical region is chosen accordingly. In other cases one may regard

values of µ both higher and lower than the one being tested as valid alternatives, and

one would therefore like a test that has high power for both cases. One can show

that in general there is no single test (i.e., no given critical region) that will have the

highest power relative to all alternatives (see, e.g., Ref. [9], Chapter 22).

Nevertheless we can use the statistic

tµ =−2lnλ (µ) (35)

to construct a test for any value of µ . As before, higher values of the statistic cor-

respond to increasing disagreement between the data and the hypothesized µ . Here,

however, the critical region can include data corresponding to an estimated signal
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strength µ̂ greater or less than µ . If one carries out a test of all values of µ using

this statistic, then both high and low values of µ may be rejected.

Suppose the lowest and highest values not rejected are µ1 and µ2, respectively.

One may be tempted to interpret the upper edge of such an interval as an upper limit

in the same sense as the one derived above using qµ from Eq. (30). The coverage

probability, however, refers to the whole interval, i.e., one has P(µ1 ≤ µ ≤ µ2) ≥
1−α . One cannot in general make a corresponding statement about the probability

for the upper or lower edge of the interval alone to be above or below µ , analogous

to the statement P(µup ≥ µ)≥ 1−α that holds for an upper limit.

The confidence intervals proposed by Feldman and Cousins [28], also called uni-

fied intervals, are based on a statistic similar to tµ from Eq. (35) with the additional

restriction that the estimator µ̂ that appears in the denominator of the likelihood ratio

is restricted to physically allowed values of µ . Large-sample formulae for the distri-

butions and corresponding p-values can be found in Ref. [24]. (In that reference the

statistic for the case µ ≥ 0 is called t̃µ .) The problem of excluding parameter values

for which one has no sensitivity is mitigated with unified intervals by the particular

choice of the critical region of the test (see Ref. [28]).

9 Bayesian limits

Although these lectures focus mainly on frequentist statistical procedures we pro-

vide here a brief description of the Bayesian approach to setting limits. This is in

fact conceptually much simpler than the frequentist procedure. Suppose we have a

model that contains a parameter µ , which as before we imagine as being propor-

tional to the rate of a sought-after signal process. In addition the model may contain

some nuisance parameters θ . As in the frequentist case, we will have a likelihood

L(x|µ ,θ) which gives the probability for the data x given µ and θ . In a Bayesian

analysis we are allowed to associate a probability with parameter values, and so we

assess our degree of belief in a given model (or set of parameter values) by giving

the posterior probability p(µ ,θ |x). To find this we use Bayes’ theorem (4), which

we can write as a proportionality

p(µ ,θ |x) ∝ L(x|µ ,θ)π(µ ,θ) , (36)

where the prior pdf π(µ ,θ) specifies our degree of belief in the parameters’ values

before carrying out the measurement.

The problematic ingredient in the procedure above is the prior pdf π(µ ,θ). For

a nuisance parameter θ , one typically has some specific information that constrains

one’s degree of belief about its value. For example, a calibration constant or back-

ground event rate may be constrained by some control measurements, leading to a

best estimate θ̃ and some measure of its uncertainty σθ . Depending on the problem

at hand one may from these subsidiary measurements as well as physical or theoret-

ical constraints construct a prior pdf for θ . In many cases this will be independent
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of the value of the parameter of interest µ , in which case the prior will factorize,

i.e., π(µ ,θ) = πµ(µ)πθ (θ). For the present discussion we will assume that this is

the case.

The more controversial part of the procedure is the prior πµ(µ) for the parameter

of interest. As one is carrying out the measurement in order to learn about µ , one

usually does not have much information about it beforehand, at least not much rel-

ative to the amount one hopes to gain. Therefore one may like to write down a prior

that is non-informative, i.e., it reflects a maximal degree of prior ignorance about µ ,

in the hopes that one will in this way avoid injecting any bias into the result. This

turns out to be impossible, or at least there is no unique way of quantifying prior

ignorance.

As a first attempt at a non-informative prior for µ we might choose to take it

very broad relative to the likelihood. Suppose as before that µ represents the rate of

signal so we have µ ≥ 0. As an extreme example of a broad prior we may try

πµ(µ) =

{

1 µ ≥ 0,

0 otherwise.
(37)

This so-called flat prior is problematic for a number of reasons. First, it cannot be

normalized to unit area, so it is not a proper pdf; it is said to be improper. Here this

defect is not fatal because in Bayes’ theorem the prior always appears multiplied by

the likelihood, and if this falls off sufficiently rapidly as a function of µ , as is often

the case in practice, then the posterior pdf for µ may indeed be normalizable.

A further difficulty with a flat prior is that our inference is not invariant under

a change in parameter. For example, if we were to take as the parameter η = ln µ ,

then according to the rules for transformation of variables we find for the pdf of η

πη(η) = πµ(µ)

∣

∣

∣

∣

dµ

dη

∣

∣

∣

∣

= eη πµ(µ(η)) , (38)

so if πµ(µ) is constant then πη(η) ∝ eη which is not. So if we claim we know

nothing about µ and hence use for it a constant prior, we are implicitly saying that

we known something about η .

Finally we should note that the constant prior of Eq. (37) cannot in any realis-

tic sense reflect a degree of belief, since it assigns a zero probability to the range

between any two finite limits.

The difficult and subjective nature of encoding personal knowledge into priors

has led to what is called objective Bayesian statistics, where prior probabilities are

based not on an actual degree of belief but rather derived from formal rules. These

give, for example, priors which are invariant under a transformation of parameters or

which result in a maximum gain in information for a given set of measurements. For

an extensive review see, for example, Ref. [29]; applications to HEP are discussed

in Refs. [30, 31].

The constant prior of Eq. (37) has been used in HEP so widely that it serves a

useful purpose as a benchmark, despite its shortcomings. Although interpretation

of the posterior probability as a degree of belief is no longer strictly true, one can
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simply regard the resulting interval as a given function of the data, which will with

some probability contain the true value of the parameter. Unlike the confidence in-

terval obtained from the frequentist procedure, however, the coverage probability

will depend in general on the true (and unknown) value of the parameter.

We now turn to the Bayesian treatment of nuisance parameters. What we get

from Bayes’ theorem is the joint distribution of all of the parameters in the problem,

in this case both µ and θ . Because we are not interested in the nuisance parameter θ
we simply integrate (or sum in the case of a discrete parameter) to find the marginal

pdf for the parameter of interest, i.e.,

p(µ |x) =
∫

p(µ ,θ |x)dθ . (39)

One typically has not one but many nuisance parameters and the integral required

to marginalize over them cannot be carried out in closed form. Even Monte Carlo in-

tegration based on the acceptance-rejection method becomes impractical if the num-

ber of parameters is too large, since then the acceptance rate becomes very small.

In such cases, Markov Chain Monte Carlo (MCMC) provides an effective means to

calculate integrals of this type. Here one generates a correlated sequence of points

in the full parameter space and records the distribution of the parameter of interest,

in effect determining its marginal distribution. An MCMC method widely applica-

ble to this sort of problem is the Metropolis-Hastings algorithm, which is described

briefly in Ref. [14]. In-depth treatments of MCMC can be found, for example, in the

texts by Robert and Casella [38], Liu [39], and the review by Neal [40].

10 The Poisson counting experiment

As a simple example, consider an experiment in which one counts a number of

events n, modeled as following a Poisson distribution with a mean of s+ b, where

s and b are the contributions from signal and background processes, respectively.

Suppose that b is known and we want to test different hypothetical values of s.

Specifically, we want to test the hypothesis of s = 0 to see if we can establish the

existence of the signal, and regardless of whether we succeed in doing this we can

set an upper limit on s.

To establish discovery of the signal using the frequentist approach, we test s = 0

against the alternative of s > 0. That is, we assume the relevant signal models imply

positive s, and therefore we take the critical region of the test to correspond to larger

numbers of events. Equivalently, we can define the p-value of the s = 0 hypothesis

to be the probability, assuming s = 0, to find as many events as actually observed or

more, i.e.,

p0 = P(n ≥ nobs|s = 0,b) =
∞

∑
n=nobs

bn

n!
e−b . (40)

We can exploit a mathematical identity



Statistics for Searches at the LHC 23

m

∑
n=0

P(n|b) = 1−Fχ2(2b;ndof) (41)

with ndof = 2(m+ 1) to relate the sum of Poisson probabilities in Eq. (40) to the

cumulative chi-square distribution Fχ2 , which allows us write the p-value as

p0 = Fχ2(2b;2nobs) . (42)

For example, suppose b = 3.4 and we observe nobs = 16 events. Eq. (42) gives

p0 = 3.6×10−6 corresponding to a significance Z = 4.5. This would thus constitute

strong evidence in favour of a nonzero value of s, but is still below the traditional

threshold of Z = 5.

To construct the frequentist upper limit we should test all hypothetical values of

s against to the alternative of s = 0, so the critical region consists of low values of

n. This means we take the p-value of a hypothesized s to be the probability to find n

as small as observed or smaller, i.e.,

ps =
n

∑
m=0

(s+b)m

m!
e−(s+b) . (43)

The upper limit at CL = 1−α is found from the value of s such that the p-value is

equal to α , i.e.,

α =
n

∑
m=0

(sup +b)m

m!
e−(sup+b) = 1−Fχ2

[

2(sup +b),2(n+1)
]

, (44)

where in the second equality we again used the identity (41) to relate the sum of

Poisson probabilities to the cumulative chi-square distribution. This allows us to

solve for the upper limit

sup =
1

2
F−1

χ2 [1−α,2(n+1)]−b , (45)

where F−1
χ2 is the chi-square quantile (inverse of the cumulative distribution). The

upper limit sup is shown in Fig. 7(a) for 1−α = 95% as a function of b for different

numbers of observed events n.

To find the corresponding upper limit in the Bayesian approach we need to as-

sume a prior pdf for s. If we use the flat prior of Eq. (37), then by using Bayes’

theorem we find the posterior pdf

p(s|n) ∝
(s+b)n

n!
e−(s+b) (46)

for s≥ 0 and p(µ |n) = 0 otherwise. This can be normalized to unit area, which gives

p(s|n) = (s+b)ne−(s+b)

Γ (b,n+1)
, (47)
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Fig. 7 Upper limits on the mean number of signal events s at 95% confidence level as a function
of the expected background b for (a) the frequentist method and (b) Bayesian method with a flat
prior.

where Γ (b,n+1) =
∫ ∞

b xne−x dx is the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a probability to s, we can ex-

press an upper limit simply by integrating the posterior pdf from the minimum value

s = 0 up to an upper limit sup such that this contains a fixed probability, say, 1−α .

That is, we require

1−α =
∫ sup

0
p(s|n)ds . (48)

To solve for sup we can use the integral

∫ a

0
xne−x dx = Γ (n+1)Fχ2(2a,2(n+1)) , (49)

where again Fχ2 is the cumulative chi-square distribution for 2(n+ 1) degrees of

freedom. Using this we find for the upper limit

sup =
1

2
F−1

χ2 [p,2(n+1)]−b , (50)

where

p = 1−α
(

1−Fχ2 [2b,2(n+1)]
)

. (51)

This is shown in Fig. 7(b). Interestingly, the upper limits for the case of b= 0 happen

to coincide exactly with the values we found for the frequentist upper limit, and for

nonzero b the Bayesian limits are everywhere higher. This means that the probability

for the Bayesian interval to include the true value of s is higher than 1−α , so in this

sense one can say that the Bayesian limit is conservative. The corresponding unified

interval from the procedure of Feldman-Cousins is described in Ref. [28].
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If the parameter b is not known, then this can be included in the limit using the

methods discussed above. That is, one must treat b as a nuisance parameter, and in

general one would have some control measurement that constrains its value. In the

frequentist approach b is eliminated by profiling; in the Bayesian case one requires

a prior pdf for b and simply marginalizes the joint pdf of s and b to find the posterior

p(s|n). The problem of a Poisson counting experiment with additional nuisance

parameters is discussed in detail in Refs. [30, 32].

11 Limits in cases of low sensitivity

An important issue arises when setting frequentist limits that is already apparent

in the example from Sec. 10. In Fig. 7(a), which shows the frequentist upper limit

on the parameter s as a function of b, one sees that sup can be arbitrarily small.

Naive application of Eq. (45) can in fact result in a negative upper limit for what

should be an intrinsically positive quantity. What this really means that all values

of s are rejected in a test of size α . This can happen if the number of observed

events n fluctuates substantially below the expected background b. One is then faced

with the prospect of not obtaining a useful upper limit as the outcome of one’s

expensive experiment. It might be hoped that such an occurrence would be rare but

by construction it should happen with probability α , e.g., 5% of the time.

Essentially the same problem comes up whenever we test any hypothesis to

which we have very low sensitivity. What “low sensitivity” means here is that the

distributions of whatever statistic we are using is almost the same under assumption

of the signal model being tested as it is under the background-only hypothesis. This

type of situation is illustrated in Fig. 8(a), where here we have labeled the model

including signal s+ b (in our previous notation, µ = 1) and the background-only

model b (i.e., µ = 0)).
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Fig. 8 (a) Distributions of the statistic Q indicating low sensitivity to the hypothesized signal
model; (b) illustration of the ingredients for the CLs limit.
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The critical region for a test of the s+ b hypothesis consists of high values of

Q. Equivalently, the p-value is the probability ps+b = P(Q ≥ Qobs|s+ b). Because

the distributions of Q under both hypotheses are very close, the power of the test of

s+ b is only slightly greater than the size of the test α , which is equivalent to the

statement that the quantity 1− pb is only slightly greater than ps+b.

If we have no sensitivity to a particular model, such as the hypothesis of a Higgs

boson with a mass much greater than what we could produce in our experiment, then

we do no want to not reject it, since our measurement can produce no evidence to

justify such a claim. Unfortunately, the frequentist procedure that rejects the signal

model if its p-value is found less then α will do just that with a probability of at

least α . And this will happen even if the model is, from an experimental standpoint,

virtually indistinguishable from the background-only hypothesis. Since we typically

take α = 0.05, we will exclude one model out of every twenty to which we have no

sensitivity.

One solution to this problem is the CLs procedure proposed by Alex Read [34,

35], whereby the threshold for rejecting a model is altered in a way that prevents

one from rejecting a model in the limit that one has very little sensitivity, but reverts

to the usual frequentist procedure when the sensitivity is high. This is achieved by

defining

CLs =
P(Q ≥ Qobs|s+b)

P(Q ≥ Qobs|b)
=

ps+b

1− pb

. (52)

The quantity CLs then is then used in place of the p-value ps+b, i.e., the s+b model

is rejected if one finds CLs ≤ α . The ingredients are illustrated in Fig. 8(b).

One can understand qualitatively how this achieves the desired goal by consider-

ing the case where the distributions of Q under the two hypotheses s+ b and b are

close together. Suppose the observed value Qobs is such that ps+b is less than α , so

that in the usual frequentist procedure we would reject the s+ b hypothesis. In the

case of low sensitivity, however, the quantity 1− pb will also be small, as can be

seen from Fig. 8(a). Therefore the quantity CLs will be greater than ps+b such that

the s+b model is not rejected by the criterion of Eq. (52).

If on the other hand the distributions are well separated, and Qobs is such that

the ps+b < α , then pb will also be small and the term 1− pb that appears in the

denominator of CLs will be close to unity. Therefore in the case with high sensitivity,

using CLs is similar to what is obtained from the usual frequentist procedure based

on the p-value ps+b.

The largest value of s not rejected by the CLs criterion gives the corresponding

CLs upper limit. Here to follow the traditional notation we have described it in terms

of the mean number of signal events s rather than the strength parameter µ , but it is

equivalent to using CLµ = pµ/(1− p0) to find an interval for µ .

The CLs procedure described above assumes that the test statistic Q is continu-

ous. The recipe is slightly different if the data are discrete, such as a Poisson dis-

tributed number of events n with a mean s + b. In this case the quantity CLs is

defined as
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CLs =
P(n ≤ nobs|s+b)

P(n ≤ nobs|b)
, (53)

where nobs is the number of events observed. Here the numerator is ps+b, which the

same as in Eq. (52). The p-value of the background-only hypothesis is pb = P(n ≥
nobs|b), but the denominator in Eq. (53) requires n less than or equal to nobs, so this

is not exactly the same as 1− pb. Equation (53) is the fundamental definition and it

reduces to the ratio of p-values for the case of a continuous test statistic.

For a Poisson distributed number of events, the CLs upper limit coincides ex-

actly with the Bayesian upper limit based on the flat prior as shown in Fig. 7(b).

It is thus also greater than or equal to the limit based on the p-value and is in this

sense conservative. It also turns out that the CLs and Bayesian limits (using a flat

prior) agree for the important case of Gaussian distributed data [34]. The problem

of exclusion in the case of little or no sensitivity is mitigated in a different way by

the unified intervals seen in Sec. 8 by the particular choice of the critical region (see,

e.g., Ref. [28]).

12 The look-elsewhere effect

Recently there has been important progress made on the problem of multiple testing,

usually called in particle physics the “look-elsewhere effect” [36, 37]. The problem

often relates to finding a peak in a distribution when the peak’s position is not pre-

dicted in advance. In the frequentist approach the correct p-value of the no-peak

hypothesis is the probability, assuming background only, to find a peak as signif-

icant as the one found more more so anywhere in the search region. This can be

substantially higher than the probability to find a peak of equal or greater signifi-

cance in the particular place where it appeared.

The “brute-force” solution to this problem involves generating data under the

background-only hypothesis and for each data set, fitting a peak of unknown posi-

tion and recording a measure of its significance. To establish a discovery one often

requires a p-value less than 2.9× 10−7, corresponding to a 5σ effect. Thus deter-

mining this with Monte Carlo requires generating and fitting an enormous number

of experiments, perhaps several times 107. This is particularly difficult in that under

the background-only hypothesis there is no real peak, but only fluctuations. One of

these fluctuations will stand out as the most significant peak and this must be found

in order to determine the value of the test statistic such as the profile likelihood ra-

tio, L(0)/L(µ̂), for that particular data set. This must be repeated tens of millions

of times without failure of the fitting program, which is is a difficult computational

challenge.

In contrast, if the position of the peak were known in advance, then the fit to

the distribution would be much faster and easier, and furthermore one can in many

cases use formulae valid for sufficiently large samples that bypass completely the

need for Monte Carlo (see, e.g., [24]). But this “fixed-position” p-value would not

be correct in general, as it assumes the position of the peak was known in advance.
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Gross and Vitells [36] have described a method that allows one to modify the

p-value computed under assumption of a fixed position to obtain the correct value

using a relatively simple calculation. Suppose a test statistic q0, defined so that larger

values indicate increasing disagreement with the data, is observed to have a value

u. Furthermore suppose the model contains a nuisance parameter θ (such as the

peak position) which is only defined under the signal model (there is no peak in

the background-only model). An approximation for the desired “global” p-value is

found to be

pglobal ≈ plocal + 〈Nu〉 , (54)

where plocal is the p-value assuming a fixed value of θ (e.g., fixed peak position),

and 〈Nu〉 is the mean number of “upcrossings” of the the statistic q0 above the level

u in the range of the nuisance parameter considered (e.g., the mass range).

The value of 〈Nu〉 can be estimated from the number of upcrossings 〈Nu0
〉 above

some much lower value, u0, by using a relation due to Davis [41],

〈Nu〉 ≈ 〈Nu0
〉e−(u−u0)/2 . (55)

By choosing u0 sufficiently low, the value of 〈Nu〉 can be estimated by simulating

only a very small number of experiments, rather than the 107 needed if one is dealing

with a 5σ effect.

Vitells and Gross also indicate how to extend the correction to the case of more

than one parameter, e.g., where one searches for a peak of both unknown position

and width, or for searching for a peak in a two-dimensional space, such as an astro-

physical measurement on the sky [37]. Here one may find some number of regions

where signal appears to be present, but within those regions there may be islands or

holes where the significance is lower. In the generalization to multiple dimensions,

the number of upcrossings of the test statistic q0 is replaced by the expectation of

a quantity called the Euler characteristic, which is roughly speaking the number of

disconnected regions with significant signal minus the number of ‘holes’.

It should be emphasized that an exact accounting of the look-elsewhere effect

requires that one specify where else one looked, e.g., the mass range in which a peak

was sought. But this may be have been defined in a somewhat arbitrary manner, and

one might have included not only the mass range but other variables that were also

inspected for peaks but where none was found. It is therefore not worth expending

great effort on an exact treatment of the look-elsewhere effect, as would be needed

in the brute-force method mentioned above. Rather, the more easily obtained local

p-value can be reported along with an approximate correction to account for the

range of measurements in which the effect could have appeared.
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13 Examples from the Higgs search at the LHC

In this section we show how the methods described above have been applied to the

recent discovery of a Higgs-like boson at the LHC. The examples are taken from

the analyses of the ATLAS experiment [42]; similar results were obtained by CMS

[43].

The Higgs search is more complicated than examples described earlier because

the production of something like a Higgs boson is characterized by two parameters

of interest: the strength parameter µ , which is defined here as the signal cross section

divided by the one predicted by the Standard Model, and the mass of the resonance,

here labeled mH. The procedure has been to carry out tests of µ for a set of fixed

masses within a given range, and the results are then interpolated. One obtains from

this two important outputs, both as a function of mH: p-values for the test of µ = 0

and confidence intervals (here, upper limits) for µ .

The p-value of the background-only hypothesis p0 is shown versus mH in Fig. 9.

The values shown are not corrected for the look-elsewhere effect; this is therefore

referred to as the local p0. On the right-hand side of the plot one can see the value

translated into the significance Z according to Eq. (9). The lowest p-value is found

at mH = 126.5 GeV and corresponds to Z = 6.0; taking into account some additional

systematic uncertainties in the electromagnetic energy response reduces this to 5.9.

Fig. 9 The p-value of the background-only hypothesis versus the Higgs mass mH (from Ref. [42];
see text).

The correction for the look-elsewhere effect is based on the procedure described

in Sec. 12 and in Ref. [36]. If the mass range of the search is taken to be 110 to 600

GeV, the peak significance Z reduces from 5.9 to 5.1; if one takes 110 to 150 GeV

it gives Z = 5.3.
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The dotted line in Fig. 9 gives the median value of Z under the hypothesis that

the Higgs boson is present at the rate predicted by the Standard Model, i.e., µ = 1.

That is, if one were to generate a data set assuming an SM Higgs boson with a mass

of 126.5 GeV, then this will lead to a certain significance Z for a test of µ = 0. If one

were to generate an ensemble of such experiments then the median of the resulting

distribution of Z values, usually referred to as the expected significance, is taken as

a measure of the sensitivity of the measurement. The median Z is preferred over the

expectation value because this is related to the median p-value still through Eq. (9);

for the expectation value the corresponding relation would not hold.

For 126.5 GeV the expected significance is Z = 4.9, as can be seen from the

dotted line. The blue band corresponds to the 68% inter-quantile range, i.e., the

lower and upper edges of the band are the 16% and 84% quantiles of the distribution

(referred to as the ±1σ band). The band quantifies how much variation of the result

to expect as a result of statistical fluctuations if the nominal signal model is correct.

From Fig. 9 one can see that the observed p-value is at the lower edge of the blue

band. So if the µ = 1 hypothesis is in fact correct, then the signal rate observed by

ATLAS fluctuated above the median value by a bit more than one standard deviation.

Figure 10 shows the upper limit on the strength parameter µ as a function of the

Higgs mass. As with the case of µ = 0 described above, the test procedure was car-

ried out for a set of discrete values of the mass and the results interpolated. The solid

curve shows the observed upper limit using the CLs procedure described in Sec. 11.

For each mass the distribution of upper limits was found under assumption of back-

ground only, and the dotted curve shows the median value. The green and yellow

bands show the 68% and 95% inter-quantile ranges, i.e., the ranges that would cor-

respond to ±1σ and ±2σ if the distribution were Gaussian. In fact because the

CLs procedure prevents one from excluding very low values of µ the distribution of

upper limits can be significantly more asymmetric than a Gaussian.

Fig. 10 CLs upper limits on the production cross section for the Higgs boson as a function of its
mass (from Ref. [42]; see text).
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For almost all mass values the observed limit is close to the expectation under

assumption of µ = 0. The exception is the mass region around 126 GeV, where

the upper limit is significantly higher. This of course corresponds to the discovered

signal.

14 Why 5 σ?

Common practice in HEP has been to regard an observed signal to be worthy of

the word “discovery” when its significance exceeds Z = 5, corresponding to a p-

value of the background-only hypothesis of 2.9× 10−7. This is in stark contrast to

many other fields (e.g., medicine, psychology) in which a p-value of 5% (Z = 1.64)

is considered significant. In this section we examine critically some of the reasons

why the community has used such an extreme threshold.

First, it is not clear that the same significance threshold should be used in all

cases. Whether one is convinced that a discovery is real should take into account the

plausibility of the implied signal and how well it describes the data. If the discov-

ered phenomenon is a priori very unlikely, then more evidence is required to pro-

duce a given degree of belief that the new phenomenon exists. As Carl Sagan said,

“. . . extraordinary claims require extraordinary evidence” [44]. This follows directly

from Bayes’ theorem (36), whereby the posterior probability of a hypothesis is pro-

portional to its prior probability. If an experimental result can only be explained by

phenomena that may not be impossible but nevertheless highly improbable (fifth

force, superluminal neutrinos), then it seems natural to demand a higher level of

statistical significance.

Some phenomena, on the other hand, are regarded by the community as quite

likely to exist before they are observed experimentally. Most particle physicists

would have bet on the Higgs boson well in advance of the direct experimental ev-

idence. As with the Higgs, however, when a discovery is announced in HEP it is

usually something fairly important and the cost of an incorrect claim is perceived

to be quite high. Every time the community endures a false discovery there is a

tendency to think that the threshold should be higher.

Another reason for the high five-sigma threshold is that the experimenter may

be unsure of the statistical model on which the reported significance relies. To first

approximation one can think of the significance Z as the estimated size of the signal

divided by the standard deviation σ in the estimated background. Here σ character-

izes the level of random fluctuation in the background, i.e., it is a statistical error. If

we have a systematic uncertainty in the background as well, then roughly speaking

these should get added in quadrature. If an underestimate of our systematic errors

would result in our σ being wrong by a factor of several, then a mere three-sigma

effect may be no real effect at all. The high threshold in this case thus compensates

for modeling uncertainty.

Another important issue is the look-elsewhere effect, where as discussed in

Sec. 12 it is difficult to define exactly where else one looked. That is, should one
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correct for the fact that the search histogram had 100 bins, or also for the fact that

one looked at 100 different histograms, or perhaps account for the thousands of sci-

entists all carrying out searches? Surely in such a scenario someone will see a bump

in a histogram somewhere that appears significant. Since it is impossible to draw

an unambiguous boundary around where one “looked”, there always remains a nag-

ging feeling that one’s correction for this effect may have been inadequate, hence

the desire for a greater margin of safety before announcing a discovery.

The p-value, however, really only addresses the issue of whether a fluctuation in

the background-only model is likely to lead to data as dissimilar to background as

what was actually obtained. It is not designed to compensate for systematic errors

in the model, the cost of announcing a false discovery or the plausibility of the phe-

nomena implied by the discovery. Usually when a new phenomenon is discovered,

it appears initially as only marginally significant, then continues to emerge until ev-

eryone is convinced. At first, everyone asks whether the apparent signal is just a

fluctuation, but at some point people stop asking that question, because it is obvious

that something has been observed. The question is whether that something is “new

physics” or an uncontrolled systematic effect. Provided that the look-elsewhere ef-

fect is taken into account in a reasonable way, this transition probably takes place

closer to the three-sigma level, in any case well before Z = 5.

Nevertheless, the 5-sigma threshold continues to be used to decide when the word

“discovery” is appropriate. In future the HEP community should perhaps think of

better ways of answering the different questions that arise when searching for new

phenomena, since the statistical significance is really only designed to say whether

the data, in the absence of a signal, is likely to have fluctuated in manner at least as

extreme as what was observed. Lumping all of the issues mentioned above into the

p-value simply makes them more difficult to disentangle.

15 Conclusions

To discover a new physical phenomenon we need to be able to demonstrate quan-

titatively that our data cannot be described using only known processes. In these

lectures we have seen how statistical tests allow us to carry out this task. They pro-

vide a framework for rejecting hypotheses on the basis that the data we observed

were uncharacteristic for them and more indicative of an alternative explanation.

Frequentist statistical tests nevertheless prevent one from asking directly certain

seemingly relevant questions, such as “what is the probability that my theory is

true?”. Bayesian statistics does allow one to quantify such a degree of belief, at

the expense of having to supply subjective prior probabilities. The frequentist and

Bayesian approaches answer different but related questions and both are valuable

tools.

We did not have time to discuss in detail many other statistical issues such as

Bayesian methods for establishing discovery, multivariate techniques and more so-

phisticated means for improving the accuracy of statistical models by introducing
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carefully motivated nuisance parameters. These methods will no doubt play an im-

portant role when the LHC enters its next data-taking phase.
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