Statistical Data Analysis: Lecture 10

Probability, Bayes’ theorem, random variables, pdfs
Functions of r.v.s, expectation values, error propagation
Catalogue of pdfs

The Monte Carlo method

Statistical tests: general concepts

Test statistics, multivariate methods

Significance tests

Parameter estimation, maximum likelithood

More maximum likelihood

Method of least squares

Interval estimation, setting limits

Nuisance parameters, systematic uncertainties
Examples of Bayesian approach
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The method of least squares
Suppose we measure N values, y,, ..., Y, ’

assumed to be independent Gaussian
r.v.s with

Ely;] = Axs;0) .

Assume known values of the control
variable x,, ..., x,, and known variances

Vil = o7 .
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We want to estimate 6, 1.e., fit the curve to the data points.

The likelithood function is

(0) IJ_V[ f(yi; 0) IJ_V[ /—1
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The method of least squares (2)

The log-likelihood function 1s therefore

N . 2
- — Xz 0
In L(0) = _1 E (s (;32 ) + terms not depending on 0
2 . 1
1=

g,

So maximizing the likelihood is equivalent to minimizing

N ( , . 2
XQ(Q) — Z ) 2’1,
i=1 i
Minimum defines the least squares (LS) estimator 0.

Very often measurement errors are ~Gaussian and so ML
and LS are essentially the same.

Often minimize y? numerically (e.g. program MINUIT).
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LS with correlated measurements

If the y, follow a multivariate Gaussian, covariance matrix V,

- 1
y, A\, V)= ex
9y ) (2m) N2V |1/2

1 . - L o
P —5(9 — A)TV 1(y —A)
Then maximizing the likelihood 1s equivalent to minimizing

N
X2(0) = 3 (yi— Az 0) (V1 (y; — M(xj; 0))
1,J=1
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Example of least squares fit

p
Fit a polynomial of order p: A(z;00,...,0p) = >  Onpz"
n=0

Y ' ' ' ' 3
6 — O"order. x2=455 :
-~ - 1% order. x2= 399 :
4" order, ¥2=0.0 I,"
4 - e -

0 1 1 1 1 1
0 1 2 3 4 5 6
X
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Variance of LS estimators

In most cases of interest we obtain the variance in a manner
similar to ML. E.g. for data ~ Gaussian we have

v2(0) = —21n L(0)

and so £
—1
/i 62X2 465 L
o 9‘ ~ 2 8 >
0< lo—p
46

or for the graphical method we

take the values of 6 where 455

X2(9) — Xr2nin _I_ 1

I
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Two-parameter LS fit

2-parameter case (line with nonzero slope):

08

06

O = 0.93 =+ 0.30, °
01 = 0.68 £ 0.10

cov|fy, 01] = —0.028
r=—0.90

Y2 = 3.99 )

Tangent lines — T4, Ty

(b)

04

06

0.8 1

Angle of ellipse — correlation (same as for ML)
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Goodness-of-fit with least squares

The value of the »? at its minimum is a measure of the level
of agreement between the data and fitted curve:
> _ % (yi — M= 0))?

Xmin 5
i=1 0

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form A(x; 6).

We can show that if the hypothesis is correct, then the statistic
t = .. follows the chi-square pdf,

1
. _ ng/2—1_—t/2
na) = e ngray” ¢

where the number of degrees of freedom i1s

ny = number of data points — number of fitted parameters
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Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number
of degrees of freedom, so if )?_. = n,the fitis ‘good’.

@)

More generally, find the p-value: p = / ) f(t;ng) dt

Xmin
This is the probability of obtaining a »?, . as high as the one
we got, or higher, if the hypothesis is correct.

E.g. for the previous example with 1st order polynomial (line),

X2 = 3.99, ng=>5-2=3, p = 0.263

whereas for the Oth order polynomial (horizontal line),

X2 = 45.5, ng=5-1=4, p=3.1x10""7
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Goodness-of-fit vs. statistical errors

Small statistical error does not mean a good fit (nor vice versa).
Curvature of X2 near its minimum — statistical errors (0'9*)

Value of X12nin — goodness-of-fit

Horizontal line fit, move the data points, keep errors on points same:

) 61 — 6,=2842013 T
Oy = 2.84 4 0.13 =ads
2 4 L i
Xmin = 4.48 + {
| ! |
Variance same as before, ) b f
Now X12nin ‘good’.
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Goodness-of-fit vs. stat. errors (2)

— X2((90) shifted down, same curvature as before.

Variance of estimator (statistical error) tells us:
if experiment repeated many times, how wide is the distribution

of the estimates @. (Doesn’t tell us whether hypothesis correct.)

P-value tells us:
if hypothesis is correct and experiment repeated many times,
what fraction will give equal or worse agreement between data

and hypothesis according to the statistic X12ni11°

Low P-value — hypothesis may be wrong — systematic error.
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LS with binned data

1 1 T

Jix)

Histogram: 0g | - fited pdf

N bins, 1 entries.
06 r

Hypothesized pdf:
f(z;0) 04 |

02 r

— normalized histogram

We have
Y; = number of entries in bin 2,

— max — -

Xi(0) =n [ fz;0)dz = npi(0)

2
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LS with binned data (2)

LS fit: minimize

N
200\ —
X()_El o

where 03 = V[yz-], here not known a priori.

Treat the y; as Poisson r.v.s, in place of true variance take either

)

o7 =MX(0) (LS method)

o? =1vy;  (Modified LS method)

1
MLS sometimes easier computationally, but X12nin no longer follows

chi-square pdf (or is undefined) if some bins have few (or no) entries.
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LS with binned data — normalization

Do not ‘fit the normalization’:

max — —

Ai(g, V) = I//wmm f(z;0)dx = vp;(0)

Ly

i.e. introduce adjustable v, fit along with 6.

U is a bad estimator for 1 (which we know, anyway!)

X 12nin
2

IQLSZ’I?,-}-

A . 9
VMLS = T — Xmin
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LS normalization example
Example with n = 400 entries, N = 20 bins:

[ —— data (400 entries)
-—- LS: ¥*=17.3, v = 400 (fixed)

ML: 2 =17.6,v=400.0+20.0

N(x)

60

- —— data (400 entries)

(@)

LS: ¥*=17.1,v=4085+20.2
MLS: ¥*>=17.8,v=3822+195

N(x)

Expect X12nin around N — m,

G. Cowan

60

(b)

— relative error in © large when /N large, n small

Either get n directly from data for LS (or better, use ML).
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Using LS to combine measurements

Use LS to obtain weighted average of /N measurements of A:

Y; = result of measurement ¢, ¢ = 1, ..., IV;
g 22 = V'|y;], assume known;

A = true value (plays role of ).

For uncorrelated ;, minimize

2 N (yi — A’
A) = ,
x(A) igl o?
Set %\E = () and solve,
N 2
. Tl Yifo; 3 1
— A\ = : : V[)\] — r
w1 1/03 sy 1/07
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Combining correlated measurements with LS

If COV[yZ', y]] = V;'j, minimize

) = 5 (i — NV Visly; = N,

i,J=1
N —1
. N o (V7
)\ — w;Yy;. w,; = J=1 Y
— §1 iYi () Z]]Xlzl(v_l)kl

N
VIAl= X wiVijw;

t,J=1

LS A has zero bias, minimum variance (Gauss-Markov theorem).
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Example: averaging two correlated measurements

2
o{ pPO103 )

Suppose we have y1, ¢2, and V' = ( 9
po102 05

A 2—
LA =wp + (- w), w =2 PO

0% + 03 — 2p0,09

R 2\ 2 2
V[)\] . (1 P )0102 2

p— = g
0? + 03 — 2p0109

The increase in inverse variance due to 2nd measurement is

— 2nd measurement can only help.
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Negative weights in LS average
If p > o1/09, — w < 0,

— weighted average is not between Y1 and o (!7)
Cannot happen if correlation due to common data, but

possible for shared random effect; very unreliable if e.g.

P, 01, 09 ncorrect.

See example in SDA Section 7.6.1 with two measurements at same
temperature using two rulers, different thermal expansion coefficients:
average is outside the two measurements; used to improve

estimate of temperature.
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Wrapping up lecture 10

Considering ML with Gaussian data led to the method of
Least Squares.

Several caveats when the data are not (quite) Gaussian, e.g.,
histogram-based data.

Goodness-of-fit with LS “easy” (but do not confuse good fit
with small stat. errors)

LS can be used for averaging measurements.

Next lecture: Interval estimation
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