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Statistical Data Analysis:  Lecture 11 
1  Probability, Bayes’ theorem, random variables, pdfs 
2  Functions of r.v.s, expectation values, error propagation 
3  Catalogue of pdfs 
4  The Monte Carlo method 
5  Statistical tests:  general concepts 
6  Test statistics, multivariate methods 
7  Significance tests 
8  Parameter estimation, maximum likelihood 
9  More maximum likelihood 
10  Method of least squares 
11  Interval estimation, setting limits 
12  Nuisance parameters, systematic uncertainties 
13  Examples of Bayesian approach 
14  tba 
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Interval estimation — introduction 

Often use +/- the estimated standard deviation of the estimator. 
In some cases, however, this is not adequate: 

 estimate near a physical boundary,  
 e.g., an observed event rate consistent with zero. 

In addition to a ‘point estimate’ of a parameter we should report  
an interval reflecting its statistical uncertainty.   

Desirable properties of such an interval may include: 
 communicate objectively the result of the experiment; 
 have a given probability of containing the true parameter; 
 provide information needed to draw conclusions about 
 the parameter possibly incorporating stated prior beliefs. 

We will look briefly at Frequentist and Bayesian intervals. 
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Frequentist confidence intervals 
Consider an estimator for a parameter θ and an estimate 

We also need for all possible θ its sampling distribution 

Specify upper and lower tail probabilities, e.g., α = 0.05, β = 0.05, 
then find functions uα(θ) and vβ(θ) such that: 
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Confidence interval from the confidence belt 

Find points where observed  
estimate intersects the  
confidence belt.   

The region between uα(θ) and vβ(θ) is called the confidence belt. 

This gives the confidence interval [a, b] 

Confidence level = 1 - α - β = probability for the interval to 
cover true value of the parameter (holds for any possible true θ). 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ γ  
 for a prespecified γ, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size γ  (confidence level is 1 - γ ). 

The interval will cover the true value of θ with probability ≥ 1 - γ. 

Equivalent to confidence belt construction; confidence belt is  
acceptance region of a test. 
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Relation between confidence interval and p-value 

Equivalently we can consider a significance test for each 
hypothesized value of θ, resulting in a p-value, pθ..   
 

 If pθ < γ, then we reject θ.  
 
The confidence interval at CL = 1 – γ consists of those values of  
θ  that are not rejected. 
 
E.g. an upper limit on θ is the greatest value for which pθ ≥ γ.  
 

 In practice find by setting pθ = γ and solve for θ. 

G. Cowan  
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Confidence intervals in practice 
The recipe to find the interval [a, b] boils down to solving 

→ a is hypothetical value of θ such that  

→ b is hypothetical value of θ such that 
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Meaning of a confidence interval 
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Central vs. one-sided confidence intervals 
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Intervals from the likelihood function  
In the large sample limit it can be shown for ML estimators: 

defines a hyper-ellipsoidal confidence region, 

If  then 

(n-dimensional Gaussian, covariance V) 
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Approximate confidence regions from L(θ )  
So the recipe to find the confidence region with CL = 1-γ  is: 

For finite samples, these are approximate confidence regions. 

Coverage probability not guaranteed to be equal to 1-γ ; 

no simple theorem to say by how far off it will be (use MC). 

Remember here the interval is random, not the parameter. 
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Example of interval from ln L(θ )  
For n=1 parameter, CL = 0.683, Qγ = 1. 
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Setting limits on Poisson parameter 
Consider again the case of finding n = ns + nb events where 

nb events from known processes (background) 
ns events from a new process (signal) 

are Poisson r.v.s with means s, b, and thus n = ns + nb 
is also Poisson with mean = s + b.  Assume b is known. 

Suppose we are searching for evidence of the signal process, 
but the number of events found is roughly equal to the 
expected number of background events, e.g., b = 4.6 and we  
observe nobs = 5 events. 

→  set upper limit on the parameter s. 

The evidence for the presence of signal events is not 
statistically significant, 
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Upper limit for Poisson parameter 
Find the hypothetical value of s such that there is a given small 
probability, say, γ = 0.05, to find as few events as we did or less: 

Solve numerically for s = sup, this gives an upper limit on s at a 
confidence level of 1-γ. 

Example:  suppose b = 0 and we find nobs = 0.  For 1-γ = 0.95, 

→ 
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Calculating Poisson parameter limits 
To solve for slo, sup, can exploit relation to χ2 distribution: 

Quantile of χ2 distribution 

For low fluctuation of n this  
can give negative result for sup;  
i.e. confidence interval is empty. 
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Limits near a physical boundary 
Suppose e.g. b = 2.5 and we observe n = 0.   

If we choose CL = 0.9, we find from the formula for sup 

Physicist:   
 We already knew s ≥ 0 before we started; can’t use negative  
 upper limit to report result of expensive experiment! 

Statistician: 
 The interval is designed to cover the true value only 90% 
 of the time — this was clearly not one of those times. 

Not uncommon dilemma when limit of parameter is close to a  
physical boundary.  
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Expected limit for s = 0 

Physicist:  I should have used CL = 0.95 — then sup = 0.496 

Even better:  for CL = 0.917923 we get sup = 10-4 ! 

Reality check:  with b = 2.5, typical Poisson fluctuation in n is 
at least √2.5 = 1.6.  How can the limit be so low? 

Look at the mean limit for the  
no-signal hypothesis (s = 0) 
(sensitivity). 

Distribution of 95% CL limits 
with b = 2.5, s = 0. 
Mean upper limit = 4.44 
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The Bayesian approach 

In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. Poisson parameter 95% CL upper limit from 
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Bayesian prior for Poisson parameter 
Include knowledge that s ≥0 by setting prior π(s) = 0 for s<0. 

Often try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  
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Bayesian interval with flat prior for s 
Solve numerically to find limit sup. 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as classical case (‘coincidence’).  

Otherwise Bayesian limit is 
everywhere greater than 
classical (‘conservative’). 

Never goes negative. 

Doesn’t depend on b if n = 0. 
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Likelihood ratio limits (Feldman-Cousins) 
Define likelihood ratio for hypothesized parameter value s: 

Here       is the ML estimator, note  

       Critical region defined by low values of likelihood ratio. 

Resulting intervals can be one- or two-sided (depending on n). 

       (Re)discovered for HEP by Feldman and Cousins,  
       Phys. Rev. D 57 (1998) 3873. 

      See also Cowan, Cranmer, Gross & Vitells, arXiv:1007.1727 
      for details on including systematic errors and on asymptotic 
      sampling distribution of likelihood ratio statistic.  
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Wrapping up lecture 12 
In large sample limit and away from physical boundaries,  
+/- 1 standard deviation is all you need for 68% CL. 

Frequentist confidence intervals 

 Complicated!  Random interval that contains true 
 parameter with fixed probability. 

 Can be obtained by inversion of a test; freedom left 
 as to choice of test. 

 Log-likelihood can be used to determine approximate 
 confidence intervals (or regions) 

Bayesian intervals 

 Conceptually easy — just integrate posterior pdf. 

 Requires choice of prior. 
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Extra slides	
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Distance between estimated and true θ	
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More on intervals from LR test (Feldman-Cousins) 
Caveat with coverage: suppose we find  n >> b. 
Usually one then quotes a measurement: 

If, however, n isn’t large enough to claim discovery, one 
sets a limit on s. 

FC pointed out that if this decision is made based on n, then 
the actual coverage probability of the interval can be less than 
the stated confidence level (‘flip-flopping’). 

FC intervals remove this, providing a smooth transition from 
1- to 2-sided intervals, depending on  n. 

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL,  
p-value of s=0 still substantial.  Part of upper-limit ‘wasted’? 
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Properties of upper limits 

Upper limit sup vs. n  Mean upper limit vs. s 

Example:  take b = 5.0, 1 - γ = 0.95 
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Upper limit versus b 

If n = 0 observed, should upper limit depend on b? 
 Classical:  yes 
 Bayesian:  no 
 FC:  yes 

Feldman & Cousins, PRD 57 (1998) 3873 
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Coverage probability of intervals 
Because of discreteness of Poisson data, probability for interval 
to include true value in general > confidence level (‘over-coverage’) 


