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What it is:  a numerical technique for calculating probabilities 
and related quantities using sequences of random numbers. 

The usual steps: 

(1)  Generate sequence r1, r2, ..., rm uniform in [0, 1]. 

(2)  Use this to produce another sequence x1, x2, ..., xn 
       distributed according to some pdf  f (x)  in which 
       we’re interested (x can be a vector). 

(3)   Use the x values to estimate some property of  f (x), e.g., 
       fraction of x values with a < x < b gives 

 →  MC calculation = integration (at least formally) 

MC generated values = ‘simulated data’ 
 →  use for testing statistical procedures 

The Monte Carlo method 
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Random number generators 
Goal:  generate uniformly distributed values in [0, 1]. 

 Toss coin for e.g. 32 bit number... (too tiring). 
 →  ‘random number generator’  

        = computer algorithm to generate r1, r2, ..., rn. 

Example:  multiplicative linear congruential generator (MLCG) 
 ni+1 = (a ni) mod m ,    where 
 ni = integer 
 a = multiplier 
 m = modulus 
 n0 = seed (initial value) 

N.B.  mod = modulus (remainder), e.g. 27 mod 5 = 2. 
This rule produces a sequence of numbers n0, n1, ... 
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Random number generators  (2) 
The sequence is (unfortunately) periodic! 

 Example (see Brandt Ch 4):  a = 3, m = 7, n0 = 1 

←  sequence repeats 

Choose a, m to obtain long period (maximum = m - 1); m usually  
close to the largest integer that can represented in the computer. 

 Only use a subset of a single period of the sequence. 
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Random number generators  (3) 
are in [0, 1] but are they ‘random’? 

Choose a, m so that the ri pass various tests of randomness: 
 uniform distribution in [0, 1], 
 all values independent (no correlations between pairs), 

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests 
 
    a = 40692 
    m = 2147483399 

Far better generators available, e.g. TRandom3, based on Mersenne 
twister algorithm, period = 219937 - 1 (a “Mersenne prime”). 
See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4 
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The transformation method 
Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn 
that follow  f (x) by finding a suitable transformation  x (r). 

Require: 

i.e. 

That is,       set and solve for  x (r). 
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Example of the transformation method 
Exponential pdf: 

Set and solve for  x (r). 

→ works too.) 
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The acceptance-rejection method 

Enclose the pdf in a box: 

(1)  Generate a random number x, uniform in [xmin, xmax], i.e. 
r1 is uniform in [0,1]. 

(2)  Generate a 2nd independent random number u uniformly 
       distributed between 0 and  fmax, i.e. 
(3)  If u <  f (x), then accept x.  If not, reject x and repeat. 
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Example with acceptance-rejection method 

If dot below curve, use  
x value in histogram. 
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Improving efficiency of the  
acceptance-rejection method 

The fraction of accepted points is equal to the fraction of 
the box’s area under the curve. 

 For very peaked distributions, this may be very low and 
 thus the algorithm may be slow. 

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms  
to f(x) more closely, where h(x) is a pdf from which we can  
generate random values and C is a constant. 

Generate points uniformly  
over C h(x). 

If point is below f(x),  
accept x. 
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Monte Carlo event generators 

Simple example:  e+e- → µ+µ-

Generate cosθ and φ: 

Less simple:  ‘event generators’ for a variety of reactions:  
  e+e- → µ+µ-, hadrons, ... 
  pp → hadrons, D-Y, SUSY,... 

e.g. PYTHIA, HERWIG, ISAJET... 

Output = ‘events’, i.e., for each event we get a list of 
generated particles and their momentum vectors, types, etc. 
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A simulated event 

PYTHIA Monte Carlo 
pp → gluino-gluino 

G. Cowan  Statistical Data Analysis / Stat 2 
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Monte Carlo detector simulation 
Takes as input the particle list and momenta from generator. 

Simulates detector response: 
 multiple Coulomb scattering (generate scattering angle), 
 particle decays (generate lifetime), 
 ionization energy loss (generate Δ), 
 electromagnetic, hadronic showers, 
 production of signals, electronics response, ... 

Output = simulated raw data →  input to reconstruction software: 
 track finding, fitting, etc.  

Predict what you should see at ‘detector level’ given a certain  
hypothesis for ‘generator level’.  Compare with the real data. 

Estimate ‘efficiencies’ = #events found / # events generated. 

Programming package:  GEANT 
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Hypotheses 
A hypothesis H specifies the probability for the data, i.e., the  
outcome of the observation, here symbolically: x. 

 x could be uni-/multivariate, continuous or discrete. 

 E.g. write x ~ f (x|H). 

 x could represent e.g. observation of a single particle,  
 a single event, or an entire “experiment”. 

Possible values of x form the sample space S (or “data space”). 

Simple (or “point”) hypothesis:  f (x|H) completely specified. 

Composite hypothesis:  H contains unspecified parameter(s). 

The probability for x given H is also called the likelihood of 
the hypothesis, written L(x|H). 
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Definition of a test 
Goal is to make some statement based on the observed data 
x as to the validity of the possible hypotheses. 

Consider e.g. a simple hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region W of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ W | H0 ) ≤ α 

If x is observed in the critical region, reject H0. 

α is called the size or significance level of the test. 

Critical region also called “rejection” region; complement is 
acceptance region. 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α

But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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Choosing a critical region 
To construct a test of a hypothesis H0, we can ask what are the  
relevant alternatives for which one would like to have a high power. 

 Maximize power wrt H1 = maximize probability to 
            reject H0 if H1 is true. 

Often such a test has a high power not only with respect to a  
specific point alternative but for a class of alternatives.   
E.g., using a measurement x ~ Gauss (µ, σ) we may test 

 H0 : µ = µ0 versus the composite alternative H1 : µ > µ0 

We get the highest power with respect to any µ > µ0  by taking  
the critical region x ≥ xc where the cut-off xc is determined by  
the significance level such that  

   α = P(x ≥xc|µ0). 
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Τest of µ = µ0 vs. µ > µ0  with  x ~ Gauss(µ,σ) 

Standard Gaussian quantile 

Standard Gaussian 
cumulative distribution 
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Choice of critical region based on power (3) 

But we might consider µ < µ0 as 
well as µ > µ0 to be viable 
alternatives, and choose the 
critical region to contain both 
high and low x (a two-sided test). 

New critical region now  
gives reasonable power  
for µ < µ0, but less power  
for µ > µ0 than the original  
one-sided test. 
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No such thing as a model-independent test 
In general we cannot find a single critical region that gives the 
maximum power for all possible alternatives (no “Uniformly 
Most Powerful” test).  

In HEP we often try to construct a test of 

 H0 : Standard Model (or “background only”, etc.) 

such that we have a well specified “false discovery rate”, 

 α = Probability to reject H0 if it is true, 

and high power with respect to some interesting alternative,  

 H1 : SUSY, Z′, etc. 

But there is no such thing as a “model independent” test.  Any 
statistical test will inevitably have high power with respect to 
some alternatives and less power with respect to others. 
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Example setting for statistical tests:   
the Large Hadron Collider 

Counter-rotating proton beams 
in 27 km circumference ring 

pp centre-of-mass energy 14 TeV 

Detectors at 4 pp collision points: 
 ATLAS 
 CMS 
 LHCb     (b physics) 
 ALICE   (heavy ion physics) 

general purpose 
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The ATLAS detector 

2100 physicists 
37 countries  
167 universities/labs 

25 m diameter 
46 m length 
7000 tonnes 
~108 electronic channels 
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A simulated SUSY event 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 

G. Cowan  
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Background events 

This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a  
     SUSY event. 

G. Cowan  
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Statistical tests (in a particle physics context) 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pT of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 
E.g. call H0 the background hypothesis (the event type we  
want to reject); H1 is signal hypothesis (the type we want). 

G. Cowan  
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Selecting events 
Suppose we have a data sample with two kinds of events, 
corresponding to hypotheses H0 and H1 and we want to select 
those of type H1. 

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event 
types H0 or H1? 

accept 
H1 

H0 

Perhaps select events 
with ‘cuts’: 

G. Cowan  
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Other ways to select events 
Or maybe use some other sort of decision boundary: 

accept 
H1 

H0 

accept 
H1 

H0 

linear or nonlinear 

How can we do this in an ‘optimal’ way? 

G. Cowan  
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant chosen 
to give a test of the desired size. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Classification viewed as a statistical test 

Probability to reject H0 if true (type I error): 

α = size of test, significance level, false discovery rate 

Probability to accept H0 if H1 true (type II error): 

1 - β = power of test with respect to H1  

Equivalently if e.g. H0 = background event, H1 = signal event,  
use efficiencies: 
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Purity / misclassification rate 
Consider the probability that an event of signal (s) type 
classified correctly (i.e., the event selection purity),  

Use Bayes’ theorem: 

Here W is signal region 
prior probability 

posterior probability = signal purity  
                                  = 1 – signal misclassification rate 

Note purity depends on the prior probability for an event to be 
signal or background as well as on s/b efficiencies. 
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Neyman-Pearson doesn’t usually help 
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio 

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data: 

 generate x ~ f (x|s)     →     x1,..., xN 

 generate x ~ f (x|b)     →     x1,..., xN 
 
This gives samples of “training data” with events of known type. 

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute). 
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Approximate LR from histograms 
Want t(x) = f (x|s)/ f(x|b) for x here 

N (x|s) ≈ f (x|s) 

N (x|b) ≈ f (x|b) 

N
(x
|s
)

N
(x
|b
)

One possibility is to generate 
MC data and construct 
histograms for both 
signal and background. 
 
Use (normalized) histogram  
values to approximate LR: 

x

x

Can work well for single  
variable. 
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Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 
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Strategies for multivariate analysis 

Neyman-Pearson lemma gives optimal answer, but cannot be 
used directly, because we usually don’t have f (x|s), f (x|b). 

Histogram method with M bins for n variables requires that 
we estimate Mn parameters (the values of the pdfs in each cell), 
so this is rarely practical. 

A compromise solution is to assume a certain functional form 
for the test statistic t (x) with fewer parameters; determine them 
(using MC) to give best separation between signal and background. 

Alternatively, try to estimate the probability densities f (x|s) and  
f (x|b) (with something better than histograms) and use the  
estimated pdfs to construct an approximate likelihood ratio. 
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Multivariate methods 
Many new (and some old) methods: 

 Fisher discriminant 
 Neural networks 
 Kernel density methods 
 Support Vector Machines 
 Decision trees 
  Boosting 
  Bagging   
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Resources on multivariate methods 

C.M. Bishop, Pattern Recognition and Machine Learning, 
Springer, 2006 

T. Hastie, R. Tibshirani, J. Friedman, The Elements of 
Statistical Learning, 2nd ed., Springer, 2009 

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., 
Wiley, 2001 
A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002. 

Ilya Narsky and Frank C. Porter, Statistical Analysis 
Techniques in Particle Physics, Wiley, 2014. 

朱永生 （ 著）， 数据多元 分析， 科学出版社，  
北京，2009。 
 
 



G. Cowan  Statistical Data Analysis / Stat 2 40 

Software  
Rapidly growing area of development – two important resources: 
 
TMVA, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 

 From tmva.sourceforge.net, also distributed with ROOT 
 Variety of classifiers 
 Good manual, widely used in HEP 

scikit-learn 
 Python-based tools for Machine Learning 
 scikit-learn.org 

 Large user community 
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Linear test statistic 

Suppose there are n input variables:  x = (x1,..., xn).   
 

Consider a linear function: 

For a given choice of the coefficients w = (w1,..., wn) we will 
get pdfs f (y|s) and f (y|b) : 
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Linear test statistic 

Fisher:  to get large difference between means and small widths  
for f (y|s) and f (y|b),  maximize the difference squared of the 
expectation values divided by the sum of the variances: 

Setting ∂J / ∂wi = 0 gives: 

, 
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The Fisher discriminant 

The resulting coefficients wi define a Fisher discriminant. 

Coefficients defined up to multiplicative constant; can also 
add arbitrary offset, i.e., usually define test statistic as 

Boundaries of the test’s 
critical region are surfaces  
of constant y(x), here linear  
(hyperplanes): 
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Fisher discriminant for Gaussian data 

Suppose the pdfs of the input variables, f (x|s) and f (x|b), are both  
multivariate Gaussians with same covariance but different means: 

f (x|s)  = Gauss(µs, V) 

f (x|b)  = Gauss(µb, V) 
Same covariance  
Vij = cov[xi, xj] 

In this case it can be shown  
that the Fisher discriminant is 

i.e., it is a monotonic function of the likelihood ratio and thus 
leads to the same critical region.  So in this case the Fisher 
discriminant provides an optimal statistical test. 
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The activation function 
For activation function h(·) often use logistic sigmoid: 
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Network architecture 
Theorem:  An MLP with a single hidden layer having a sufficiently 
large number of nodes can approximate arbitrarily well the optimal 
decision boundary. 
 
Holds for any continuous non-polynomial activation function 
Leshno, Lin, Pinkus and Schocken (1993) Neural Networks 6, 861-867 

However, the number of required nodes may be very large; cannot 
train well with finite samples of training data. 

Recent advances in Deep Neural Networks have shown important 
advantages in having multiple hidden layers. 

For a particle physics application of Deep Learning, see e.g.  
Baldi, Sadowski and Whiteson, Nature Communications 5 (2014);  arXiv:1402.4735. 
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Overtraining 
Including more parameters in a classifier makes its decision boundary  
increasingly flexible, e.g., more nodes/layers for a neural network. 

A “flexible” classifier may conform too closely to the training points;  
the same boundary will not perform well on an independent test  
data sample (→ “overtraining”). 

training sample independent test sample 
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Monitoring overtraining 
If we monitor the fraction of misclassified events (or similar, e.g.,  
error function E(w)) for test and training samples, it will usually  
decrease for both as the boundary is made more flexible: 

error 
rate 

flexibility (e.g., number  
of nodes/layers in MLP) 

test sample 
training sample 

optimum at minimum of 
error rate for test sample 

increase in error rate 
indicates overtraining 
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output: 

(Garrido, Juste and Martinez, ALEPH 96-144) 
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Naive Bayes method 
First decorrelate x, i.e., find y = Ax, with cov[yi, yj] = V[yi] δij . 
Pdfs of x and y are then related by 

where 

If nonlinear features of g(y) not too important, estimate using 
product of marginal pdfs: 

Do separately for the two hypotheses s and b (separate matrices 
As and Ab and marginal pdfs gs,i, gb,i).  Then define test statistic as 

Called Naive Bayes classifier. Reduces 
problem of estimating an n-dimensional pdf 
to finding n one-dimensional marginal pdfs. 
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Kernel-based PDE (KDE) 
Consider d dimensions, N training events, x1, ..., xN,  
estimate f (x) with 

Use e.g. Gaussian kernel: 

kernel 
bandwidth  
(smoothing parameter) 

x where we want  
to know pdf 

x of ith training 
event 
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Gaussian KDE in 1-dimension 
Suppose the pdf (dashed line) below is not known in closed form,  
but we can generate events that follow it (the red tick marks): 

Goal is to find an approximation to the pdf using the generated  
date values. 
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Gaussian KDE in 1-dimension (cont.) 
Place a kernel pdf (here a Gaussian) centred around each  
generated event weighted by 1/Nevent: 



G. Cowan  Statistical Data Analysis / Stat 2 67 

Gaussian KDE in 1-dimension (cont.) 
The KDE estimate the pdf is given by the sum of  
all of the Gaussians: 
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Choice of kernel width 
The width h of the Gaussians is analogous to the bin width 
of a histogram.  If it is too small, the estimator has noise: 
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If width of Gaussian kernels too large, structure is washed out: 

Choice of kernel width (cont.) 
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Various strategies can be applied to choose width h of kernel 
based trade-off between bias and variance (noise). 

 Adaptive KDE allows width of kernel to vary, e.g., wide where 
target pdf is low (few events); narrow where pdf is high. 

Advantage of KDE:  no training!   

Disadvantage of KDE:  to evaluate we need to sum Nevent terms,  
so if we have many events this can be slow. 

Special treatment required if kernel extends beyond range 
where pdf defined.  Can e.g., renormalize the kernels to unity 
inside the allowed range; alternatively “mirror” the events 
about the boundary (contribution from the mirrored events  
exactly compensates the amount lost outside the boundary). 

Software in ROOT:  RooKeysPdf   (K. Cranmer, CPC 136:198,2001) 

KDE discussion 
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Each event characterized by 3 variables,  x, y, z: 
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Test example (x, y, z) 

no cut on z 

z < 0.5 z < 0.25 

z < 0.75 

x

xx

x

y

y

y

y
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Decision trees (2) 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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AdaBoost 
First initialize the training sample T1 using the original 

x1,..., xN                   event data vectors 
y1,..., yN                   true class labels (+1 or -1) 
w1

(1),..., wN
(1)           event weights 

with the weights equal and normalized such that 

Then train the classifier f1(x) (e.g., a decision tree) with a method 
that uses the event weights.  Recall for an event at point  x,  

f1(x) = +1 for x in signal region, -1 in background region           

We will define an iterative procedure that gives a series of 
classifiers f1(x),  f2(x),... 
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Error rate of the kth classifier 
At the kth iteration the classifier fk(x) has an error rate 

where I(X) = 1 if X is true and is zero otherwise. 

Next assign a score to the kth classifier based on its error rate, 
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Updating the event weights 
The classifier at each iterative step is found from an updated  
training sample, in which the weight of event i is modified from  
step k to step k+1 according to 

Here Zk is a normalization factor defined such that the sum of the 
weights over all events is equal to one. 

That is, the weight for event i is increased in the k+1 training 
sample if it was classified incorrectly in step k.  

 Idea is that next time around the classifier should pay more 
 attention to this event and try to get it right. 
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Defining the classifier 
After K boosting iterations, the final classifier is defined as a  
weighted linear combination of the fk(x), 

One can show that the error rate on the training data of the final  
classifier satisfies the bound 

i.e. as long as the εk < ½ (better than random guessing), with 
enough boosting iterations every event in the training sample will 
be classified correctly. 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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A simple example (2D) 
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually not available). 

     f(x1|x2) ~ Gaussian, different means for s/b, 
    Gaussians have same σ, which depends on x2, 
    f(x2) ~ exponential, same for both s and b, 
    f(x1, x2) =  f(x1|x2) f(x2): 
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Joint and marginal distributions of x1, x2 

background 

signal 

Distribution f(x2) same for s, b. 

So does x2 help discriminate 
between the two event types? 
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Likelihood ratio for 2D example 
Neyman-Pearson lemma says best critical region is determined 
by the likelihood ratio: 

Equivalently we can use any monotonic function of this as 
a test statistic, e.g., 

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2! 
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Contours of constant MVA output 

Exact likelihood ratio Fisher discriminant 
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Contours of constant MVA output 

Multilayer Perceptron 
1 hidden layer with 2 nodes 

Boosted Decision Tree 
200 iterations (AdaBoost) 

Training samples:  105 signal and 105 background events 
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ROC curve 

ROC = “receiver operating  
characteristic” (term from  
signal processing). 
 
Shows (usually) background  
rejection (1-εb) versus  
signal efficiency εs. 
 
Higher curve is better;  
usually analysis focused on 
a small part of the curve. 
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2D Example:  discussion 
Even though the distribution of x2 is same for signal and 
background, x1 and x2 are not independent, so using x2 as an input 
variable helps. 

Here we can understand why:  high values of x2 correspond to a 
smaller σ for the Gaussian of x1.  So high x2 means that the value 
of x1 was well measured. 

If we don’t consider x2, then all of the x1 measurements are 
lumped together.  Those with large σ (low x2) “pollute” the well 
measured events with low σ (high x2). 

Often in HEP there may be variables that are characteristic of how 
well measured an event is (region of detector, number of pile-up 
vertices,...).  Including these variables in a multivariate analysis 
preserves the information carried by the well-measured events, 
leading to improved performance. 
 
 
 
In this example we can understand why x2 is useful, even 
though both signal and background have same pdf for x2. 
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Summary on multivariate methods 
Particle physics has used several multivariate methods for many years: 

 linear (Fisher) discriminant 
 neural networks 
 naive Bayes   

and has in recent years started to use a few more: 

 boosted decision trees 
 support vector machines 
 kernel density estimation 
 k-nearest neighbour 

The emphasis is often on controlling systematic uncertainties between 
the modeled training data and Nature to avoid false discovery. 

Although many classifier outputs are "black boxes", a discovery 
at 5σ significance with a sophisticated (opaque) method will win the 
competition if backed up by, say, 4σ evidence from a cut-based method. 


