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The Monte Carlo method

What 1t 1s: a numerical technique for calculating probabilities
and related quantities using sequences of random numbers.

The usual steps: 9(r)

(1) Generate sequence 7y, 75, ..., ¥, uniform 1n [0, 1].

(2) Use this to produce another sequence x,, x,, ..., x, ° 1

..., n

distributed according to some pdf f(x) in which
we’re interested (x can be a vector).

(3) Use the x values to estimate some property of f(x), e.g.,
fraction of x values with a <x <b gives (b r(3)dx .

— MC calculation = integration (at least formally)

MC generated values = ‘simulated data’
— use for testing statistical procedures
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Random number generators

Goal: generate uniformly distributed values 1n [0, 1].
Toss coin for e.g. 32 bit number... (too tiring).

— ‘random number generator’
= computer algorithm to generate r, r,, ..., r,.

Example: multiplicative linear congruential generator (MLCG)
n.., = (a@an)modm, where
n; = integer
a = multiplier
m = modulus
n, = seed (initial value)
N.B. mod = modulus (remainder), e.g. 27 mod 5 = 2.

This rule produces a sequence of numbers n,, 1, ...
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Random number generators (2)

The sequence 1s (unfortunately) periodic!
Example (see Brandt Ch 4): a=3,m="7,n,=1

n1 = (3-1)mod7 =3

n> = (3-3)mod7 =2
ny = (3-2)mod7 =6
ng = (3-6)mod7 =4
ng = (3-4)mod7 =25
nge = (3-5)mod7 =1 <« sequence repeats

Choose a, m to obtain long period (maximum = m — 1); m usually
close to the largest integer that can represented in the computer.

Only use a subset of a single period of the sequence.
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Random number generators (3)
r; = n;/m are in [0, 1] but are they ‘random’?
Choose a, m so that the r; pass various tests of randomness:
uniform distribution 1n [0, 1],
all values independent (no correlations between pairs),
¢.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests

a = 40692 ﬁ@%ﬂhﬁhﬂw

m = 2147483399

N(r)
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Far better generators available, e.g. TRandom3, based on Mersenne
twister algorithm, period = 21°37-1 (a “Mersenne prime”).

See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4
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The transformation method

Given ry, 7,,..., r, uniform 1n [0, 1], find x, x,,..., x,
that follow f(x) by finding a suitable transformation x (7).

lllll

Require: P(r <) = P(x < z(r"))

ie. [ gmyar=1'= [T p@)de' = Fa('))

That 1s, set F'(z) =r and solve for x (7).




Example of the transformation method

Exponential pdf: f(x; &) = %e_x/g (x> 0)

x]1
Set /oEG x/£d$/=7“ and solve for x (7).

— x(r)=—-€In(1—7r) (x(r) = —&Inr works too.)
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The acceptance-rejection method

05

J()

04 Xt x

Enclose the pdf in a box: o

02 r

01

O 1

(1) Generate a random number x, uniform in [x ], 1.e.

min?® X max

T = Tmin + r1(Tmax — Tmin) » r, 1s uniform in [0,1].

(2) Generate a 2nd independent random number z uniformly
distributed between 0 and £, ,i.e. ©u = r2fmax -

(3) Ifu < f(x), then accept x. If not, reject x and repeat.
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Example with acceptance-rejection method
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Improving efficiency of the
acceptance-rejection method

The fraction of accepted points is equal to the fraction of
the box’s area under the curve.

For very peaked distributions, this may be very low and
thus the algorithm may be slow.

Improve by enclosing the pdf f(x) in a curve C A(x) that conforms
to f(x) more closely, where 4(x) 1s a pdf from which we can
generate random values and C' 1s a constant.

}r ______ 7 --------- | Generate points uniformly
A P over C h(x).

E If point 1s below f(x),

E """ ~ ] accept x.
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Monte Carlo event generators :

u
" \

Simple example: efe™ — W~ " ‘\9

Generate cos@ and ¢: W

f(cosl; Apg) < (1 4+ gAFB cos + cos?0) ,

o) =5 (0<6<2m)

Less simple: ‘event generators’ for a variety of reactions:
ete- — utu, hadrons, ...
pp — hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = ‘events’, 1.e., for each event we get a list of

generated particles and their momentum vectors, types, etc.
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Event listing (summary) A Simlﬂated eVent

particle/jet KS KF orig p_x P_yY p_z E

Ip+! 21 2212 0 0,000 0,000 7000,000 7000,000 0,938
Ip+! 21 2212 0 0,000 0,000-7000,000 7000,000 0,938

[

Igl 21 21
lubar! 21 -2
21 21
21 21
21 1000021
21 1000021
21-1000024
21 -3
21 4
1¥chi_201 21 1000023
Ibl 21 5
Ibbar! 21 -5
1“chi_101 21 1000022
Isl 21 3
Ichar! 21 -4
1“chi_101 21 1000022
Ihu_mu! 21 14
Ihu_mubar! 21 -14

0,863 -0,323 1739,862 1739,862 0,000
-0,621 -0,163 -777,415 777,415 0,000
-2,427 5,486 1487,857 1487 >><..

-62,910 63,357 -463,274 471
314,363 544,843 493,897 973) 397 pi+ 0,008 0,398 -308,296 308,297
-379,700 -476,000 525,686 930) 395 gamma 0,407 0,087-1695,458 1695,458
120,058 112,247 129,860 263) 399 gamma 0,113 -0,029 -314,822 314,822
259,400 187,468 83,100 330) 400 (pi0) 0,021 0,122 103,709 103,709
-79,403 242,409 283,026 381) 401 (pi0) 0,084 -0,068 -94,276 94,276
-326,241 -80,971 113,712 385) 402 (pi0) 0,267 -0,052 -144,673 144,674
-51,841 -294,077 389,953 491) 403 ganma -1,581 2,473 3,308 4,421
-0,597 -99,577 21,299 101) 404 gamma -1,494 2,143 3,061 4,016
103,362 81,316 83,457 175) 405 pi- 0,007 0,738 4,015 4,085

5,451 38,374 52,302 65) 406 pi+ -0,024 0,293 0,486 0,585

20,839 -7,250 5,938 22) 407 K+ 4,382 -1,412 -1,799 4,368
-136,266 -72,961 53,246 181 408 pi- 1,183 -0,894 -0,176 1,500
-78,263 -24,757 21,719 84) 403 (pi0) 11 0,955 -0,453 -0,530 1,221
-107,801 16,901 38,226 115) 410 (pi0) 11 2,349 -1,105 -1,181 2,855
411 (Kbar0) 11 1,441 0,247 0,472 1,615
qanmna 1 22 2,636 1,357 0,125 2) 412 pi- 1 2,232 -0,400 -0,249 2,285
{“chi_1-) 11-1000024 129,643 112,440 129,820 262) 413 k+ 1 1,380 -0,652 -0,361 1,644
(“chi_20) 11 1000023 -322,330 -80,817 113,191 382} 414 (pi0) 11 1,078  -0,265 0,175 1,132
“chi_10 1 1000022 97,944 77,819 80,917 169) 415 (K_S0) 11 1,841 0,111 0,894 2,109
“chi_10 1 1000022 -136,266 -72,961 53,246 181) 416 K+ 0,307 0,107 0,252 0,642
nU_mu 1 14 -78,263 -24,757 21,719 84) 417 pi- 0,266 0,316 -0,201 0,480
nu_mubar 1 -14 -107,801 16,901 38,226 115) 418 nbar0 1,335 1.641 2,078 3,111
{Delta++) 11 2224 0,222 0,012-2734,287 2734} 419 (pi0) 0,899 1,046 1,311 1,908
420 pi+ 0,217 1,407 1,356 1,971
421 (pi0) 1,207 2,336 2,767 3,820
422 n0 3,475 5,324 5,702 8,592
423 pi- 1,856 2,608 2,808 4,259
424 gamma -0,012 0,247 0,421 0,489
425 gamma 0,025 0,034 0,009 0,043
426 pi+ 2,718 5,229 6,403 8,703
427 (pi0) 4,109 6,747 7.597 10,961

PYTHIA Monte Carlo 123 (pi0) 0BE L1t o2 160t

430 gamma -0,383 1,169 1,208 1,724

pp —> gluinO—gluinO I431 gamma -0,2010 0,070 0,060 0,221

000~ O B

e
MR ) L0 L0 L0 00 00 00 =~ =~ =~ & O & NN =
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Monte Carlo detector simulation
Takes as input the particle list and momenta from generator.

Simulates detector response:
multiple Coulomb scattering (generate scattering angle),
particle decays (generate lifetime),
lonization energy loss (generate A),
electromagnetic, hadronic showers,
production of signals, electronics response, ...

Output = simulated raw data — 1nput to reconstruction software:

track finding, fitting, etc.

Predict what you should see at ‘detector level’ given a certain
hypothesis for ‘generator level’. Compare with the real data.

Estimate ‘efficiencies’ = #events found / # events generated.

Programming package: GEANT

G. Cowan Statistical Data Analysis / Stat 2
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Hypotheses

A hypothesis H specifies the probability for the data, 1.e., the
outcome of the observation, here symbolically: x.

x could be uni-/multivariate, continuous or discrete.

E.g. write x ~ f (x|H).

x could represent e.g. observation of a single particle,
a single event, or an entire “experiment”.

Possible values of x form the sample space S (or “data space”).
Simple (or “point”) hypothesis: f(x|H) completely specified.
Composite hypothesis: H contains unspecified parameter(s).

The probability for x given H 1s also called the likelihood of
the hypothesis, written L(x|H).
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Definition of a test

Goal 1s to make some statement based on the observed data
x as to the validity of the possible hypotheses.

Consider e.g. a simple hypothesis A, and alternative H,.

A test of H,, 1s defined by specifying a critical region /¥ of the
data space such that there 1s no more than some (small) probability
o, assuming /1, 1s correct, to observe the data there, 1.e.,

PxEe W|Hy) <«
If x 1s observed 1n the critical region, reject H,,.
o 1s called the size or significance level of the test.

Critical region also called “rejection” region; complement is
acceptance region.
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Definition of a test (2)

But in general there are an infinite number of possible critical
regions that give the same significance level o.

So the choice of the critical region for a test of /4, needs to take
into account the alternative hypothesis H,.

Roughly speaking, place the critical region where there 1s a low
probability to be found if H,, 1s true, but high if H, 1s true:

"y e \'\-l—\cal yeaton W
': b/‘/—?(x\HA
X
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Rejecting a hypothesis

Note that rejecting H,, 1s not necessarily equivalent to the
statement that we believe it 1s false and /, true. In frequentist

statistics only associate probability with outcomes of repeatable
observations (the data).

In Bayesian statistics, probability of the hypothesis (degree
of belief) would be found using Bayes’ theorem:

P(r|H ) ( )
P(Hlr) = [ P(x|H)m(H)dH

which depends on the prior probability m(H).

What makes a frequentist test useful 1s that we can compute

the probability to accept/reject a hypothesis assuming that it
1S true, or assuming some alternative is true.

G. Cowan Statistical Data Analysis / Stat 2
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Type-1, Type-l1I errors
Rejecting the hypothesis /1, when it 1s true is a Type-I error.
The maximum probability for this is the size of the test:
PxEe W|H)) <«

But we might also accept /4, when it is false, and an alternative
H, 1s true.

This 1s called a Type-II error, and occurs with probability
Px ES-W|H, )=p

One minus this 1s called the power of the test with respect to
the alternative H,:

Power = 1 -3
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Choosing a critical region

To construct a test of a hypothesis H,, we can ask what are the
relevant alternatives for which one would like to have a high power.

Maximize power wrt [/, = maximize probability to
reject H, if H, 1s true.

Often such a test has a high power not only with respect to a
specific point alternative but for a class of alternatives.
E.g., using a measurement x ~ Gauss (u, o) we may test

H, : u = u, versus the composite alternative H, : u > u,

We get the highest power with respect to any u > i, by taking
the critical region x > x_ where the cut-off x_ 1s determined by
the significance level such that

a = P(x Zxc|1u0)°
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Test of u = py vs. u > py, with x ~ Gauss(u,0)

Standard Gaussian
\ /——nm«m region W cumulative distribution

\

azl—é(mc—'uo)
g
Foo X\ M x Te = po+0® (1 — a)

\

Standard Gaussian quantile
power =1 — 3= Pz > z.|u) =
._\L

}q g

POWCY
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Choice of critical region based on power (3)

But we might consider u <y, as
well as u >y, to be viable
alternatives, and choose the
critical region to contain both
high and low x (a two-sided test).

New critical region now
gives reasonable power
for u < u,, but less power
for u > pu, than the original
one-sided test.

powey
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No such thing as a model-independent test

In general we cannot find a single critical region that gives the
maximum power for all possible alternatives (no “Uniformly
Most Powerful” test).

In HEP we often try to construct a test of
H, : Standard Model (or “background only”, etc.)
such that we have a well specified “false discovery rate”,
a = Probability to reject H, 1f 1t 1s true,
and high power with respect to some interesting alternative,
H, : SUSY, Z, etc.

But there 1s no such thing as a “model independent” test. Any
statistical test will inevitably have high power with respect to
some alternatives and less power with respect to others.
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Example setting for statistical tests:
the Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

Detectors at 4 pp collision points: K o A
ATLAS . N\ by "”)
CMS «—— general purpose : “
LHCb (b physics)
ALICE (heavy ion physics)
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The ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

2100 physicists
37 countries
167 universities/labs

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter
46 m length

7000 tonnes
~108 electronic channels
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A simulated SUSY event

high p.. jets
of hadrons

missing transverse energy
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ATLAS Aatlantis

G. Cowan

Background events

Event: myFiles2_8.4.0_3026_7999%02

This event from Standard
Model ttbar production also
has high p. jets and muons,
and some missing transverse
energy.

— can easily mimic a
SUSY event.
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Statistical tests (1n a particle physics context)

Suppose the result of a measurement for an individual event
is a collection of numbers & = (x1,...,Zn)

x, = number of muons,
X, = mean p of jets,
X, = missing energy, ...

T follows some n-dimensional joint pdf, which depends on
the type of event produced, 1.e., was it

pp—tt, PP —4gg,-..

For each reaction we consider we will have a hypothesis for the
pdfof 7, e.g., f(Z|Ho), f(Z|H1) , etc.

E.g. call H, the background hypothesis (the event type we
want to reject); [, 1s signal hypothesis (the type we want).

G. Cowan Statistical Data Analysis / Stat 2
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Selecting events

Suppose we have a data sample with two kinds of events,
corresponding to hypotheses H, and H, and we want to select

those of type H,.

Each event is a point in  space. What ‘decision boundary’
should we use to accept/reject events as belonging to event
types H, or H,?

Perhaps select events
with ‘cuts’:

T, <

X j <Cj
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Test statistics

The boundary of the critical region for an n-dimensional data
space x = (x,,..., X,,) can be defined by an equation of the form

t(xy,....xn) = teut
where #(x,,..., x,) 1s a scalar test statistic.
We can work out the pdfs g(t|Ho), g(t|H1), - ..

2

g(1)

4

cut

Decision boundary is now a . accept Hy - refect H,
single ‘cut’ on ¢, defining |
the critical region. i g(tiHy) |

So for an n-dimensional
problem we have a 05 r
corresponding 1-d problem.

G. Cowan Statistical Data Analysis / Stat 2
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Test statistic based on likelihood ratio

How can we choose a test’s critical region 1n an ‘optimal way’?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of
H,, (background) versus H,, (signal) the critical region should have

f(x|Hy)
f(x|Ho)

> C

inside the region, and < c outside, where c 1s a constant chosen
to give a test of the desired size.

_ f(x|H1)
f(x[Hp)

Equivalently, optimal scalar test statistic is | #(x)

N.B. any monotonic function of this is leads to the same test.
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Classification viewed as a statistical test

Probability to reject H,, if true (type I error): « = f(x|Hp)dx
W

a = size of test, significance level, false discovery rate
Probability to accept H if H, true (type Il error) = | f(x|H;)dx

W
1 = p = power of test with respect to H,

Equivalently if e.g. H, = background event, H, = signal event,
use efficiencies:

Ep = f(x|Hp) dx = «
W

Es = / f(x|H1)dx =1 — 3 = power
W
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Purity / misclassification rate

Consider the probability that an event of signal (s) type
classified correctly (i.e., the event selection purity),

Use Bayes’ theorem:

£ prior probability

Here W is signal region

N \/
P(x € W|s)P(s)
PexeW) = 5 cWioPE) + Px e Wh)P(D)
\ N e
posterior probability = signal purity
= ] — signal misclassification rate

Note purity depends on the prior probability for an event to be
signal or background as well as on s/b efficiencies.

G. Cowan Statistical Data Analysis / Stat 2
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Neyman-Pearson doesn’t usually help

We usually don’t have explicit formulae for the pdfs f(x|s), f(x|b),
so for a given x we can’t evaluate the likelihood ratio

 f(xls)
") = 7o)

Instead we may have Monte Carlo models for signal and
background processes, so we can produce simulated data:

generate x ~ f(x|s) —  Xy,..., Xy

generate x ~ f(x|b) —  x,..., Xy

This gives samples of “training data” with events of known type.

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).
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Approximate LR from histograms

Want #(x) = f(x|s)/f(x|b) for x here

\/

)
=
Z

One possibility is to generate
MC data and construct
histograms for both

signal and background.

N(x[s) = f(x]s) —s

_—
—I

Use (normalized) histogram
values to approximate LR:

N(xib)

N(x[b) = f(x|b) I N (z|s)
I ~
— \| t(z) ~ N(z|b)

Can work well for single

G. Cowan

variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables. Try using 2-D histograms:

> >
signal — ."-:-;;.f—.:‘;;:%.s':.i." . “._ ol . : back-
RS AN AT T[] eround
‘ N. - 4q....'_; ;. i _:. j
X W DA AN

Approximate pdfs using N(x,y|s), N(x,y|b) in corresponding cells.

But if we want M bins for each variable, then in n-dimensions we
have M" cells; can’t generate enough training data to populate.

— Histogram method usually not usable for » > 1 dimension.
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f(x|s), f(x|b).

Histogram method with M bins for n variables requires that

we estimate M" parameters (the values of the pdfs in each cell),
so this 1s rarely practical.

A compromise solution 1s to assume a certain functional form
for the test statistic #(x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f(x|s) and
f(x|b) (with something better than histograms) and use the
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods

Many new (and some old) methods:
Fisher discriminant
Neural networks
Kernel density methods
Support Vector Machines
Decision trees

Boosting
Bagging

G. Cowan Statistical Data Analysis / Stat 2
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Resources on multivariate methods

C.M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of
Statistical Learning, 2" ed., Springer, 2009

R. Duda, P. Hart, D. Stork, Pattern Classification, 2™ ed.,
Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2" ed., Wiley, 2002.

Ilya Narsky and Frank C. Porter, Statistical Analysis
lechniques in Particle Physics, Wiley, 2014.

KKE (JE), TIOBMIELTRITHIT, EEHiR,
dE3=, 2009,

G. Cowan Statistical Data Analysis / Stat 2
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Software

Rapidly growing area of development — two important resources:

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual, widely used in HEP

scikit-learn

Python-based tools for Machine Learning

scikit-learn.orqg

Large user community

G. Cowan Statistical Data Analysis / Stat 2 40



Linear test statistic

Suppose there are »n input variables: x = (x,..., x).

n
Consider a linear function:  y(Xx) = Z W;T;
i=1

For a given choice of the coefficients w = (w,,..., w,) we will

get pdfs f(y|s) and f(y|b) :

L(y\s)
| \’\ ,{L/g'(’gnﬂ
& \& > o, <~

1 T
Elyls]  Efylb]

G. Cowan Statistical Data Analysis / Stat 2
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Linear test statistic

Fisher: to get large difference between means and small widths
for f(y|s) and f(y|b), maximize the difference squared of the
expectation values divided by the sum of the variances:

_ (Elyls] - Elylb)?
TW) = PRV

Setting 0J/ ow,; = 0 gives:
w o W (pap, — )

W;; = cov|z;, z;|s] + cov|z;, x;|b]

pis = Elzils], pip = Elzi|b]

G. Cowan Statistical Data Analysis / Stat 2
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The Fisher discriminant

The resulting coefficients w,; define a Fisher discriminant.

Coefficients defined up to multiplicative constant; can also
add arbitrary offset, 1.e., usually define test statistic as

T
y(x) = wo + Z W;T;
i=1

Boundaries of the test’s
critical region are surfaces
of constant y(x), here linear

(hyperplanes):
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Fisher discriminant for Gaussian data

Suppose the pdfs of the input variables, f(x|s) and f(x|b), are both
multivariate Gaussians with same covariance but different means:

f(x|s) = Gauss(u
f(xb) = Gauss(u,, V) < Vi~ covlx x|

o V) <€— Same covariance

f(x]s)
f(x[b)
1.€., it 1S a monotonic function of the likelihood ratio and thus

leads to the same critical region. So in this case the Fisher
discriminant provides an optimal statistical test.

In this case i1t can be shown y(x) ~ In
that the Fisher discriminant is

G. Cowan Statistical Data Analysis / Stat 2 e



Transformation of inputs

If the data are not Gaussian with equal covariance, a linear decision
boundary 1s not optimal. But we can try to subject the data to a

transformation . R
(Pl(x)) AAF (pm(x)

and then treat the ¢ as the new input variables. This 1s often called

“feature space” and the ¢ are “basis functions™. The basis

functions can be fixed or can contain adjustable parameters which
we optimize with training data (cf. neural networks).

In other cases we will see that the basis functions only enter as
dot products

p—y —_—

(p(‘i:i)'(p(fj):K(‘i:i) -7::])

and thus we will only need the “kernel function™ K(x’,, xj)

G. Cowan Statistical Data Analysis / Stat 2
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[ _inear decision boundaries

A linear decision boundary 1s only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Nonlinear transformation of inputs

We can try to find a transformation, Xi,---, X, =@ (X),....9,(X)
so that the transformed “feature space” variables can be separated

better by a linear boundary:

» Here, guess fixed
¢ =tan  (x,/x;) basis functions

s (no free parameters)
P,=\Vx; X,

G. Cowan Statistical Data Analysis / Stat 2 47



Neural networks

Neural networks originate from attempts to model neural processes
(McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only “advanced”
multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing
the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the
resulting discriminant function has the best performance.

G. Cowan Statistical Data Analysis / Stat 2
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The single layer perceptron

n
Define the discriminant using y(X)=h Wo"‘Z WX,
i=1

where /& 1s a nonlinear, monotonic activation function; we can use
. . . o —-X _1
e.g. the logistic sigmoid A(x)=(1+e ) .

X
If the activation function is monotonic, |
the resulting y(x) is equivalent to the
original linear discriminant. This is an O y(x)
example of a “generalized linear model”
called the single layer perceptron. T
X

» output node

input layer
G. Cowan Statistical Data Analysis / Stat 2
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The activation function

For activation function A(-) often use logistic sigmoid:

h(z) = 1 —I—le-f"
h(x) |
0.8
0.6
0.4
0.2
0
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The multilayer perceptron

Now use this idea to define not only the output y(x), but also the set of
transformed inputs ¢, (x),...,®,, (X) that form a “hidden layer’:

Superscript for weights indicates
layer number

\

n
P (F)=h|wy+ 2, w)'x,
j=1

! hidden  output

inputs
layer ¢
This 1s the multilayer perceptron, our basic neural network model;

straightforward to generalize to multiple hidden layers.
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Network architecture

Theorem: An MLP with a single hidden layer having a sufficiently
large number of nodes can approximate arbitrarily well the optimal
decision boundary.

Holds for any continuous non-polynomial activation function
Leshno, Lin, Pinkus and Schocken (1993) Neural Networks 6, 861-867

However, the number of required nodes may be very large; cannot
train well with finite samples of training data.

Recent advances in Deep Neural Networks have shown important
advantages in having multiple hidden layers.

For a particle physics application of Deep Learning, see e.g.
Baldi, Sadowski and Whiteson, Nature Communications 5 (2014); arXiv:1402.4735.
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Network training

The type of each training event is known, i.e., for event a we have:

xa:(xl 3eers x,,) the input variables, and

t,=0,1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function”

Contribution to error function
from each event
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Numerical minimization of E(w)

Consider gradient descent method: from an initial guess in weight
space w'" take a small step in the direction of maximum decrease.
[.e. for the step T to T+1,

W= OV £ (37

learning rate (1>0)

If we do this with the full error function E(w), gradient descent does
surprisingly poorly; better to use “conjugate gradients”.

But gradient descent turns out to be useful with an online (sequential)
method, 1.e., where we update w for each training event a, (cycle through
all training events): .

w(T+ ) w(f)_ n V Ea(w(f))
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Error backpropagation

Error backpropagation (“backprop™) is an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written y(x) = h(u(x)) where

(1) ..
Z Wik Xk
k=0

where we defined ¢, = x, = | and wrote the sums over the nodes

u(?c):Z w(lz}(pj(}), @ (x)=h
=0

in the preceding layers starting from 0 to include the offsets.

0E,

So e.g. for event a we have S=(v,—t,)h (u(X))p,(3)

2)
0wy b
derivative of
Chain rule gives all the needed derivatives. activation function

G. Cowan Statistical Data Analysis / Stat 2 55



Overtraining

Including more parameters 1n a classifier makes its decision boundary
increasingly flexible, e.g., more nodes/layers for a neural network.

A “flexible” classifier may conform too closely to the training points;
the same boundary will not perform well on an independent test

data sample (— “overtraining”).

> 4

training sample

A

independent test sample
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Monitoring overtraining

If we monitor the fraction of misclassified events (or similar, e.g.,
error function E(w)) for test and training samples, 1t will usually
decrease for both as the boundary 1s made more flexible:

optimum at minimum of
error rate for test sample

error
rate
l Increase 1n error rate

/ indicates overtraining

— test sample

training sample

flexibility (e.g., number
of nodes/layers in MLP)
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Neural network example from LEP II

Signal: efe” - W*W™ (often 4 well separated hadron jets)
Background: e*e” — qqgg (4 less well separated hadron jets)

s | < 1nput variables based on jet
h oas | oos | 1~ structure, event shape, ...
T e 0 ke ° wawes  nONE by itself gives much separation.
e % “ }&% Neural network output:
I:;(Nm?; ‘ ng\eficit; ’ glf:r\ority1 2:; :
o.o:E~ " o.o:;— Ty o.o::— Th :f L J
?.og(Ap?inori(yf Q Qs'lhrus t1 [ oiain(E,.)i s 01 02 03 04 05 06 07 N%Eron%’utpu:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Probability Density Estimation (PDE)

Construct non-parametric estimators for the pdfs of the data x for the
two event classes, p(xIH ), p(xIH ) and use these to construct the

likelihood ratio, which we use for the discriminant function:

L BlxlH)
y(x) = p(x|Ho)

n-dimensional histogram is a brute force example of this; we will
see a number of ways that are much better.
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Correlation vs. independence

In a general a multivariate distribution p(x) does not factorize into a
product of the marginal distributions for the individual variables:

n holds only if the

2\ — 3 (4 e
P(l)—n pi(x;) components of x
are independent

Most importantly, the components of x will generally have nonzero
covariances (1.e. they are correlated):

V,.]:cov[x,., xj]:E[x,.xj]—E[x,.]E[xj]io

G. Cowan Statistical Data Analysis / Stat 2
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Decorrelation of input variables

But we can define a set of uncorrelated input variables by a
linear transformation, i.e., find the matrix A such that for Y= 4 X
the covariances covly, yi] =0:

fLnl 6 T T T T

-

s“"’

0 0 -
g | 2 L i’
4 f @ tr 8
6 1 1 1 1 6 1 1 1 1
6 4 2 0 2 4 6 5 4 2 0 2 4 6
X M

For the following suppose that the variables are “decorrelated” in
this way for each of p(xIHO) and p(xIHl) separately (since in general

their correlations are different).
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Decorrelation 1s not enough

But even with zero correlation, a multivariate pdf p(x) will in general
have nonlinearities and thus the decorrelated variables are still not
independent.

. pdf with zero covariance but
,

—

j components still not
¢ L independent, since clearly
F L p(xy, x,)

L p(xy]x))
: 2 py(x))

¢pz(xz)

and therefore

X1 plxx,)# p(x)) palx,)

G. Cowan Statistical Data Analysis / Stat 2
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Naive Bayes method
First decorrelate x;, 1.e., find y = Ax, with cov[y, y;] = Vy,] 0, .
Pdfs of x and y are then related by

f(x)=|Jlg(y(x))  where J = det(A)

If nonlinear features of g(y) not too important, estimate using
product of marginal pdfs:

f0) = [ T] 9s(ws(x)) = |det(A)| T] 9:((Ax):)
1=1 1=1

Do separately for the two hypotheses s and b (separate matrices
A, and 4, and marginal pdfs g ;, g, ;). Then define test statistic as

fs(x) Called Naive Bayes classifier. Reduces
y(x) = (%) problem of estimating an n-dimensional pdf
b to finding » one-dimensional marginal pdfs.
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Kernel-based PDE (KDE)

Consider d dimensions, N training events, x,, ..., Xy,
estimate f (x) with

.th . .
x where we want x of /™ training

to know pdf / event
N\

P T — T;
T®) = h z; " ( h )
\ ™~ bandwidth

kernel (smoothing parameter)
: 1 =
Use e.g. Gaussian kernel: K(x) = (zﬂ)d/ze_k”'Q/Q
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Gaussian KDE 1in 1-dimension

Suppose the pdf (dashed line) below 1s not known 1n closed form,
but we can generate events that follow it (the red tick marks):

-
—
L™
e o S

Goal 1s to find an approximation to the pdf using the generated
date values.
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Gaussian KDE 1n 1-dimension (cont.)

Place a kernel pdf (here a Gaussian) centred around each
generated event weighted by 1/N,

event*

G. Cowan Statistical Data Analysis / Stat 2
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Gaussian KDE 1n 1-dimension (cont.)

The KDE estimate the pdf is given by the sum of
all of the Gaussians:

G. Cowan Statistical Data Analysis / Stat 2
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Choice of kernel width

The width % of the Gaussians 1s analogous to the bin width
of a histogram. If it is too small, the estimator has noise:

G. Cowan Statistical Data Analysis / Stat 2
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Choice of kernel width (cont.)

If width of Gaussian kernels too large, structure 1s washed out:

G. Cowan Statistical Data Analysis / Stat 2
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KDE discussion

Various strategies can be applied to choose width / of kernel
based trade-off between bias and variance (noise).

Adaptive KDE allows width of kernel to vary, e.g., wide where
target pdf 1s low (few events); narrow where pdf is high.

Advantage of KDE: no training!

Disadvantage of KDE: to evaluate we need to sum N

event LETMS,
so 1f we have many events this can be slow.

Special treatment required if kernel extends beyond range
where pdf defined. Can e.g., renormalize the kernels to unity
inside the allowed range; alternatively “mirror” the events
about the boundary (contribution from the mirrored events
exactly compensates the amount lost outside the boundary).

Software in ROOT: RooKeysPdf (K. Cranmer, CPC 136:198,2001)
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Test example with TMVA

X,V,Z:

Each event characterized by 3 variables,
[ TMVAInput Variable: x | [ TMVAInput Varizble: y |
§ RN EE R R EERR RERRE R ‘§ 1-'s|g'n'd"””'””"'”'”"
_g 'g' [77] Background
3 g o8

WO-flow (5,8): (0.0, 0.0]% [ 10.0, D.2)%

0.6f
0.4

0.2}

ORI W (RSN TN TN SN VN TN SN SN TN NS (N SN . |

UIO-flow (S,B): (0.0, 0.0% ( (0.0, 0.2)%

[ TMVAInput Variable:z |

Normalsed
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Test example (x, y, z)

~~zutonz

no cuton z
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Fisher
discriminant

Naive Bayes,
no decorrelation

10"5

G. Cowan

€nres

0

Multilayer
perceptron

_ enlres

10° =
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Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank

of mineral o1l exposed to a beam Etectron cancidate
fuzzy ring, short trz}qk

of neutrinos and viewed by 1520 v~ &

photomultiplier tubes: w
n : P

MiniBooNE Detector

Muon candidate
sharp ring, filled in

Rt
w

n ~P

ﬁ | Pion candidate
‘ _two "e-like" rings

. . Z a

Search for v to v_oscillations ol
ticle i n_—x<n

required particle 1.d. using

information from the PMTs.
H.J. Yang, MiniBooNE PID, DNP06
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Decision trees

Out of all the mnput variables, find the one for which with a
single cut gives best improvement 1n signal purity:

signal !
signal ! background !

where w.. 1s the weight of the ith event.

P=

Resulting nodes classified as either
signal/background.

[terate until stop criterion reached
based on e.g. purity or minimum
number of events in a node.

The set of cuts defines the decision
boundary.

G. Cowan Statistical Data Analysis / Stat 2
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2/9

Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577
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Finding the best single cut

The level of separation within a node can, e.g., be quantified by
the Gini coefficient, calculated from the (s or b) purity as:

G =p(l—p)

For a cut that splits a set of events a into subsets b and ¢, one
can quantify the improvement in separation by the change in
weighted Gini coefficients:

A=W,G, —W,Gy, — W.G. where,eg., W, = Z w;
1ea

Choose e.g. the cut to the maximize A; a variant of this
scheme can use instead of Gini e.g. the misclassification rate:

c=1—max(p,1 —p)

G. Cowan Statistical Data Analysis / Stat 2 page 76



Decision trees (2)

The terminal nodes (leaves) are classified a signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with discriminant function

fix) =1 1f x in signal region, —1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.

G. Cowan Statistical Data Analysis / Stat 2 page 77



Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that 1s more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X ..., X event data vectors (each x multivariate)

Yysees ¥, tTUE class labels, +1 for signal, —1 for background

W, W event weights

Now define a rule to create from this an ensemble of training samples
I,T, .., derive a classifier from each and average them.

Trick 1s to create modifications in the training sample that give
classifiers with smaller error rates than those of the preceding ones.

A successful example is AdaBoost (Freund and Schapire, 1997).
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AdaBoost

First initialize the training sample 7, using the original

Xeees Xy event data vectors
Visees Yy true class labels (+1 or —1)
w, (D, wy (D event weights

with the weights equal and normalized such that

N
Z urz(l) =1

i=1
Then train the classifier f,(x) (e.g., a decision tree) with a method
that uses the event weights. Recall for an event at point x,

f1(x) = +1 for x 1n signal region, —1 in background region

We will define an iterative procedure that gives a series of
classifiers f,(x), f,(x),...

G. Cowan Statistical Data Analysis / Stat 2 page 79



Error rate of the kth classifier

At the kth 1teration the classifier f,(x) has an error rate
N

k
ek =y wiVI(y; fr(x;) < 0)
i1=1
where I(X) = 1 if X 1s true and 1s zero otherwise.

Next assign a score to the kth classifier based on its error rate,

11 l—c’;‘k
— 1n
2 Ek

X =

G. Cowan Statistical Data Analysis / Stat 2
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Updating the event weights

The classifier at each iterative step 1s found from an updated
training sample, in which the weight of event i 1s modified from
step k to step k+1 according to
e~k i (Xi)yi
"lU§k+1) = U (k)

) Zk

Here Z, 1s a normalization factor defined such that the sum of the
weights over all events 1s equal to one.

That 1s, the weight for event i 1s increased in the £+1 training
sample 1f 1t was classified incorrectly 1n step k.

Idea 1s that next time around the classifier should pay more
attention to this event and try to get 1t right.
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Defining the classifier

After K boosting iterations, the final classifier 1s defined as a
weighted linear combination of the f,(x),

K
t(x) = Z o fr.(X)
k=1

One can show that the error rate on the training data of the final
classifier satisfies the bound

K
e < H 2/ k(1 — )
k=1

1.e. as long as the g, <% (better than random guessing), with
enough boosting iterations every event in the training sample will

be classified correctly.
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BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, |l or T).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

_l 1 1 | I | | 1 I | | I I I | | I I I | 1

1 7 e un-weighted misclassified event rate 3

0.8 _: a weighted musclassified event rate. err_ _

= o B T B*hl((l—enm)--‘errm), ]5=05 ;

S 06 - - T L . B L
S
< 04
0.2 4
.

0 200 400 600 800 11000
Number of Tree Iterations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

Training MC Samples .VS.  Testing MC Samples

. . _: — 1500 — _

From MiniBooNE =~ ™1  DNwe=1 1 e 1

20000 " ] Ei
example: 10000 — i I] 500 Ei II

3 Jl N hl
Performance stable T
after a few hundred =  Niee = 100 oo Nigge = 100
W 6000 :.' " )

trees. wo 4 &y wo 4 &
: “:' B> 2000 3 2 /'L/r\'ll'k
0 T l-’l T T T T T .-.I. T T T I T T 0 - l.-‘l T T T T T I--I-' T T I T

3000 — _ _
-5 _ r - _ r
1 Ntree =500 10000 — Ntree =500
2000 — —ar 7500 — L
] TR ] iy
: _-l ". 5 —] -" - .
1000 o N J'.I‘Jr\'l\ 5000 "
] ¥ - 2500 | e
. '.| = 1 _‘n‘ “w,
I S T A S B R S I P s wes S ,
-20 0 20 -20 0 20
2000 I
. N. =1000 8000 - N. =1000
1500 — tree ] tree
] ::\--‘—-_l 6000 - .
1000 —_ l.—l- I_. 4000 _: ...,' '\l‘.
0 l-: T T I T T I.I I T T T I T 0 = .-: T T I T T T [‘-‘I--l T I T
-40 -20 0 20 -40 -20 0 20
Boosting Outputs Boosting Outputs
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A simple example (2D)
Consider two variables, x, and x,, and suppose we have formulas

for the joint pdfs for both signal (s) and background (b) events (in
real problems the formulas are usually not available).

f(x,]x,) ~ Gaussian, different means for s/b,
Gaussians have same ¢, which depends on x,,
f(x,) ~ exponential, same for both s and b,

fxp, x5) = flxyfx,) fxy):

1 2 1022 1
—(a:l _ﬂ's) /20’ (11,‘2) —332/)\
I1,T9|S) = e e
f( : 2| ) 2‘710(1172) A\
1 (1 —11: )2 /202 1 _
f(z1,z9|b) = o~ (@1—pp)?/20%(z2) = ,—z2/A

V2o (xq) A

0(:132) = O’()e_"m/€
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Joint and marginal distributions of x,, x,

o 8
x

6  background”

= — signal

----- background
0.75 -

05 r

0.25

G. Cowan

4
X

0.75 ]

05 r

0.25 r

— signal
----- background

Distribution f(x,) same for s, b.

So does x, help discriminate
between the two event types?

Statistical Data Analysis / Stat 2
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Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region 1s determined
by the likelihood ratio:

. f(z1,x2]s)
) = i aalb)

Equivalently we can use any monotonic function of this as
a test statistic, e.g.,

(1g — p12) + (ps — pn) 1

1
3
Int = 086—2"32/5

Boundary of optimal critical region will be curve of constant In ¢,
and this depends on x,!
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Contours of constant MV A output

4 -
L
| 0 i 1 OAI
4 -4
i ) i X
Exact likelihood ratio Fisher discriminant
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Contours of constant MV A output

Multilayer Perceptron Boosted Decision Tree
1 hidden layer with 2 nodes 200 iterations (AdaBoost)

Training samples: 10° signal and 10° background events
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ROC curve

" ROC = “receiver operating
T 08 characteristic” (term from
' signal processing).
06
Shows (usually) background
rejection (1-¢,) versus
0-4r signal efficiency ¢..
R MLP . -
02 o BDT it Higher curve 1s better;
{ usually analysis focused on

0 02 04 06 08 1 asmall part of the curve.
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2D Example: discussion

Even though the distribution of x, 1s same for signal and
background, x, and x, are not independent, so using x, as an input
variable helps.

Here we can understand why: high values of x, correspond to a
smaller ¢ for the Gaussian of x,. So high x, means that the value
of x, was well measured.

If we don’t consider x,, then all of the x, measurements are
lumped together. Those with large ¢ (low x,) “pollute” the well
measured events with low ¢ (high x,).

Often 1n HEP there may be variables that are characteristic of how
well measured an event 1s (region of detector, number of pile-up
vertices,...). Including these variables in a multivariate analysis
preserves the information carried by the well-measured events,

leading to improved performance.
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:

linear (Fisher) discriminant
neural networks
naive Bayes

and has 1n recent years started to use a few more:

boosted decision trees
support vector machines
kernel density estimation
k-nearest neighbour

The emphasis is often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 5o significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 40 evidence from a cut-based method.
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