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Interval estimation — introduction

In addition to a ‘point estimate’ of a parameter we should report
an interval reflecting its statistical uncertainty.

Desirable properties of such an interval may include:
communicate objectively the result of the experiment;
have a given probability of containing the true parameter;
provide information needed to draw conclusions about
the parameter possibly incorporating stated prior beliefs.

Often use +/— the estimated standard deviation of the estimator.
In some cases, however, this 1s not adequate:

estimate near a physical boundary,

€.g., an observed event rate consistent with zero.

We will look briefly at Frequentist and Bayesian intervals.
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Frequentist confidence intervals

Consider an estimator 8 for a parameter 6 and an estimate 0, .

We also need for all possible @ its sampling distribution g(0;0) .

Specify upper and lower tail probabilities, e.g., oc= 0.05, 8= 0.05,
then tind functions u,(6) and v46) such that:

o = P@>ua(6) s

— /ua(e) 9(8:0) df

B = PO <wvg(0))

vi(0
/5( ) (5. 0)dd

— o0
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Confidence interval from the confidence belt
The region between u,(6) and v4(6) 1s called the confidence belt.

Find points where observed
estimate intersects the T P b
confidence belt. 2 L

This gives the confidence interval [a, b] —

Confidence level = 1 — a— 8 = probability for the interval to
cover true value of the parameter (holds for any possible true 6).
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Confidence intervals by inverting a test

Confidence intervals for a parameter 6 can be found by
defining a test of the hypothesized value 6 (do this for all 6):

Specify values of the data that are ‘disfavoured’ by 6
(critical region) such that P(data in critical region) < y
for a prespecified ¥, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value 6.
Now 1nvert the test to define a confidence interval as:

set of @ values that would not be rejected in a test of
size ¥ (confidence level is 1 —7).

The interval will cover the true value of 6 with probability > 1 — .

Equivalent to confidence belt construction; confidence belt 1s
acceptance region of a test.
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of 6, resulting in a p-value, p,.

If p, < 7, then we reject 6.

The confidence interval at CL = 1 — yconsists of those values of
6 that are not rejected.

E.g. an upper limit on 0 1s the greatest value for which p,> .

In practice find by setting p,= yand solve for 6.
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Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

o0 R - oo —~ —~
o :/ g(e;e)cw:[ 9(0:a) do,

ua(6) Oobs
vg(0) N 0, R R
B = /ﬁ g(Q;Q)dQ:/Ong(Q;b)dQ.
e o
% 1 a 8y, @ E Oops D e

05

— a 1s hypothetical value of 0 such that P(0 > 6,,c) = o
— b 1s hypothetical value of 8 such that P(6 < 0,,c) = 5.
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Meaning of a confidence interval

N.B. the interval is random, the true @ is an unknown constant.

A A

Often report interval [a, b] as 074 ie c=0 — a,d=b-—20.

_cj

So what does 6 = 80.25"’8:%% mean? It does not mean:

P(80.00 < 6 < 80.56) = 1 — o — f3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — 3 of experiments, interval will cover 6.
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Central vs. one-sided confidence intervals

Sometimes only specify ¢ or 3, — one-sided interval (limit)
S S
Often take @ = [ = 5 — coverage probability = 1 — 7y

— central confidence interval

N.B. ‘central’ confidence interval does not mean the interval
is symmetric about @, but only that o = 3.

The HEP error ‘convention’: 68.3% central confidence interval.
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Approximate confidence intervals/regions
from the likelihood function

Suppose we test parameter value(s) 8 = (6,, ..., 8.) using the ratio

A(0) = ﬁﬁz; 0<\B) <1

Lower A(#) means worse agreement between data and
hypothesized 8. Equivalently, usually define

te = —21In \(0)

so higher 7, means worse agreement between 6 and the data.

o0
p-value of @ therefore Po = / f(te|O) dte
t9,obs
™ need pdf
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Confidence region from Wilks’ theorem

Wilks’ theorem says (in large-sample limit and providing
certain conditions hold...)

tol0) ~ v2 chi-square dist. with # d.o.f. =
f(te|€) ~ x5, # of components in 8 = (6,, ..., 6.).

.., n

Assuming this holds, the p-value is
Pe — 1 — Fx%(te)
To find boundary of confidence region set p,= a and solve for #,:

tg = F-QI(I—OA)

X
L(6
Recall also tp = —2In (A)
L(6)
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Confidence region from Wilks’ theorem (cont.)

1.e., boundary of confidence region in 8 space is where
InL(6) =InL(0) — 3F,' (1 - )
For example, for 1 —a = 68.3% and n = 1 parameter,

F'0.683) =1
X1

and so the 68.3% confidence level interval 1s determined by

In L(6) = In L(6) —%

Same as recipe for finding the estimator’s standard deviation, 1.e.,

[é — 0, 0+ 05) is a 68.3% CL confidence interval.
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Example of interval from In L(6)
For n=1 parameter, CL = 0.683, Q= 1.

log L(1)

a4 b o | Our exponential
’ ‘ ‘ example, now with
only n =5 events.

Can report ML estimate
1 with approx. confidence
interval fromInL_, — 1/2
as “asymmetric error bar’’:
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G. Cowan

For increasing number of parameters, CL = 1 — a decreases for

Multiparameter case

confidence region determined by a given

Qa :F)él(l_a)

1l —«
Qa n=1 n=2 n=3 n= n=>m
1.0 | 0.683 0.393  0.199  0.090 0.037
2.0 | 0.843 0.632 0428 0.264 0.151
4.0 0954 0865 0.739 0.594 0.451
9.0 | 0.997 0.989 0971 0.939 0.891
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Multiparameter case (cont.)

Equivalently, O, increases with n for a given CL =1 — «.

_ Qa

l—a n=1 n=2 n=3 n=4 n=>5
0.683 [ 1.00 2.30) 3.93 4.72 5.89

0.90 2.71 4.61 6.25 7.78 9.24

0.95 5.84 2.99 7.82 9.49 11.1

0.99 6.63 9.21 11.3 13.3 15.1
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Ingredients for a test / interval

Note that these confidence intervals can be found using only the
likelihood function evaluated with the observed data. This is

because the statistic
L(6
tg = —2In (A)
L(0)
approaches a well-defined distribution independent of the
distribution of the data in the large sample limit.

For finite samples, however, the resulting intervals are approximate.

In general to carry out a test we need to know the distribution of
the test statistic #(x), and this means we need the full model P(x|0).
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Frequentist upper limit on Poisson parameter

Consider again the case of observing n ~ Poisson(s + b).

Suppose b =4.5, n_. = 5. Find upper limit on s at 95% CL.
Relevant alternative 1s s = 0 (critical region at low n)

p-value of hypothesized s is P(n <n_, ; s, b)

obs?

Upper limit s, at CL = 1 — a found from

Ngobs " b n
o = P(TL < nobs;sup,b) _ Z (3 P_I'_ ) e—(Sup+b)
n.
n=0

1 .
Sup = 5 Fat (1= 05 2(ngps + 1)) — b

1
= 5Fx—;(o.gs; 2(5+1)) —4.5=6.0
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n ~ Poisson(s+b): frequentist upper limit on s

For low fluctuation of n formula can give negative result for s, ;
1.e. confidence interval is empty.

—
N

95%)

—
o

6 events observed

sy (CL
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Limits near a physical boundary
Suppose e.g. b = 2.5 and we observe n = 0.

[t we choose CL = 0.9, we find from the formula for s,

sup = —0.197 (CL = 0.90)

Physicist:
We already knew s > 0 before we started; can’t use negative
upper limit to report result of expensive experiment!

Statistician:
The interval 1s designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s =0
Physicist: I should have used CL = 0.95 — then s, = 0.496
Even better: for CL =0.917923 we gets,, = 107!

Reality check: with b = 2.5, typical Poisson fluctuation in # 1s
at least V2.5 = 1.6. How can the limit be so low?

Look at the mean limit for the [
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b=2.5, 5= 0. o __”
Mean upper limit = 4.44 |

| I”IHIALIIII

| 1 |
Q 5 10 15
Sup
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The Bayesian approach to limits

In Bayesian statistics need to start with ‘prior pdf’ m6), this
reflects degree of belief about g before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

L(x]0)m(6)
[ L(x|0")7(6") do’

p(6lar) = x L(z|0)7(6)

Integrate posterior pdf p(6| x) to give interval with any desired
probability content.

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from

Sup
0.95 = / p(s|n) ds

— 00
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Bayesian prior for Poisson parameter
Include knowledge that s > 0 by setting prior 7(s) = 0 for s <O.

Could try to reflect “prior ignorance’ with e.g.

1 s>0
m(s) = .
O otherwise

Not normalized but this 1s OK as long as L(s) dies off for large s.

Not invariant under change of parameter — 1f we had used instead
a flat prior for, say, the mass of the Higgs boson, this would
imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used
as a point of reference;

or viewed as a recipe for producing an interval whose frequentist
properties can be studied (coverage will depend on true s).

G. Cowan Statistical Data Analysis / Stat 4 22



Bayesian upper limit with flat prior for s

Put Poisson likelihood and flat prior into Bayes’ theorem:

B9 (s> 0)

p(s|n) o< ——
T:

Normalize to unit area:

(8 4 b)ne—(s+b)
Lb,n+1) «—u upper incomplete
gamma function

p(s|n) =

Upper limit s, determined by requiring

l—a= / upp(s|n) ds
0
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Bayesian interval with flat prior for s

Solve to find limit s,

|
Sup = §szl p,2(n+1)]=b

where
p=1-a (1 —F,2[2b,2(n+ 1)])

For special case b = 0, Bayesian upper limit with flat prior

numerically same as one-sided frequentist case (‘coincidence’).

G. Cowan Statistical Data Analysis / Stat 4
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Bayesian interval with flat prior for s

For b > 0 Bayesian limit 1s everywhere greater than the (one
sided) frequentist upper limit.

Never goes negative. Doesn’t depend on b 1f n = 0.

—
N

95%)

—
o

6 events observed

o

Sy (CL
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Priors from formal rules

Because of difficulties in encoding a vague degree of belief

in a prior, one often attempts to derive the prior from formal rules,
e.g., to satisfy certain invariance principles or to provide maximum
information gain for a certain set of measurements.

Often called “objective priors”
Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent
possible extreme cases).

In Objective Bayesian analysis, can use the intervals in a

frequentist way, 1.e., regard Bayes’ theorem as a recipe to produce
an interval with certain coverage properties.
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Priors from formal rules (cont.)

For a review of priors obtained by formal rules see, e.g.,

Robert E. Kass and Larry Wasserman, The Selection of Prior Distributions by

Formal Rules, J. Am. Stat. Assoc., Vol. 91, No. 435, pp. 1343-1370 (1996).

Formal priors have not been widely used in HEP, but there 1s
recent interest in this direction, especially the reference priors
of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high
energy physics, Phys. Rev. D 82 (2010) 034002, arX1v:1002.1111.

D. Casadei, Reference analysis of the signal + background model

in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270.

G. Cowan Statistical Data Analysis / Stat 4
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Jeffreys’ prior

According to Jeffreys’ rule, take prior according to

m(6) x \/det(1(0))
where

L(x|0) dx

I..(6) - — 0% In L(x|6) __/UzlllL(:lf|9)
WS 00,00, | 06,00 ;

1s the Fisher information matrix.

One can show that this leads to inference that 1s invariant under
a transformation of parameters.

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson
mean U it is proportional to 1/V .

G. Cowan Statistical Data Analysis / Stat 4
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Jeffreys’ prior for Poisson mean

Suppose n ~ Poisson(u). To find the Jeffreys’ prior for w,

)1 92 14
Ln|p) = K- d‘_ 111‘ L _ n

n! O [ 2 I
I _p ()2‘-111‘L B E[n] _ 1

() IUz 1“2 lu'

() oc y/I(p) = —

So e.g. for 11 = s + b, this means the prior 7(s) ~ 1/N(s + b), which
depends on 5. But this is not designed as a degree of belief about s.
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Prototype search analysis

Search for signal in a region of phase space; result 1s histogram
of some variable x giving numbers:

n=(ny...,nyN)
Assume the n, are Poisson distributed with expectation values
E[ni] = us; + b;

strength parameter
where

Si = Stot folx:04)dr, by = by folxz:0y) dx .

\ Jbinz binz

signal background
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Prototype analysis (1I)

Often also have a subsidiary measurement that constrains some
of the background and/or shape parameters:

m = (my,...,mu)

Assume the m. are Poisson distributed with expectation values

E|m;| = u;(0)

nuisance parameters (6, 6,,b,.,)

Likelihood function is

N ; 15 M S e
1S; +b:)% U, .
L(1,0) =] ! Jn',f) SRR | (S
j=1 7 k=1 """k
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Statistical tests for a non-established signal
(1.e. a “search”)

Consider a parameter m proportional to the rate of a signal
process whose existence 1s not yet established.

Suppose the model for the data includes both m and a set of
nuisance parameters 6.

To test hypothetical values of i, use profile likelithood ratio:

/ maximizes L for
specified u

K maximize L
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Test statistic for discovery
Try to reject background-only (1= 0) hypothesis using

(

—21n A(0) >0
qo = <

0 <0
That 1s, here we regard positive mas the relevant alternative, so
the critical region is taken to correspond to high values of .

Note that even though here physically u > 0, we allow

to be negative. In large sample limit its distribution becomes
Gaussian, and this will allow us to write down simple
expressions for distributions of our test statistics.

G. Cowan Statistical Data Analysis / Stat 4

33



Test statistic for upper limits

For purposes of setting an upper limit on (1 use

—2InA(pn) < p
4y = R
0 (>

Here we regard the relevant alternative to be low (i, so we define
the critical region to correspond to low values of .
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Wald approximation for profile likelihood ratio

To find p-values, we need:  f(qo|0), f(q.|n)

For median significance under alternative, need: f(q,|/’)

Use approximation due to Wald (1943)

(pr — f1)? :
~2InA(p) = H 4 0(1/VN)
y N
[t ~ Gaussian(y/, o) sample size
ie., Ela] =/
o from covariance matrix V', use, e.g..

vl g 0°In L
B 06,00
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Noncentral chi-square for —2InA(u)

If we can neglect the O(1/\N) term, —2InA(u) follows a
noncentral chi-square distribution for one degree of freedom
with noncentrality parameter

_ N2
\ — (lu 21“’ )
o

/
-~

As a special case, if ¢’ = u then A =0 and -2InA(u) follows
a chi-square distribution for one degree of freedom (Wilks).

G. Cowan Statistical Data Analysis / Stat 4
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
Distribution of g, in large-sample limit

Assuming approximations valid in the large sample (asymptotic)
limit, we can write down the full distribution of ¢, as

Flaolp!) = (1 —d (%)) (q0) + f 1“ \/IT(\P {—é (\/‘1__ %/)2]

The special case (' = 0 1s a “half chi-square™ distribution:

1 1 1 1
0 —qo /2
f(qo|0) = (q()) 5 7on q

In large sample limit, f(g,|0) independent of nuisance parameters;
f(qoln") depends on nuisance parameters through o.
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Cumulative distribution of g, significance

From the pdf, the cumulative distribution of g, 1s found to be

F(goly') = @ <\/q_() - %)
The special case ' =0 1s
F(q0|0) = q’(@)
The p-value of the u = 0 hypothesis 1s
po =1— F(q0|0)
Therefore the discovery significance Z 1s simply
Z=o"11-po)= Vo
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Example of a p-value
ATLAS, Phys. Lett. B 716 (2012) 1-29

Q_O L L L L L L L B L
= ATLAS 2011-2012  __ .
S \s=7TeV: [Ldt =4.6-4.8 fb" e Exp. =
Vs=8TeV: |Ldt=5.8-5.9 fb" +io
1 e - - aeSea DD DIIIIIIIIIIIIIIIIIIIIIIIIIIIgIZIIIIIIIIIIIIIIIIT™ OO
2 0 Il = et W o 10
102 rmeimn T ] 2
10-3 T 40 36
10
1086 . \s 40
10°
10-7 ----------------------------------------------------------------- ‘ 56
107
100 e - I R e - - - - -+ < < < - - - - - 60
107°
10-11111|||||||||||||||||11||||||“1||||||||||
110 115 120 125 130 135 140 145 150
m, [GeV]
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Distribution of g,

Similar results for g,

L - 2
flaulp') = @ (’uI — '“> 0(qu) + LN exp 1 (\/(Tl _ M)
l‘ 7 Y2V 2 \VH™ T T,

1 1 1 1
li) = 504, —
f(1p|/> (1;) 9 o 0

g

Flqu /)= (\/@_ M)

Pu = 1 — F(q#“l’) =1- (I)<\/q>pl)
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Example of upper limits
ATLAS, Phys. Lett. B 716 (2012) 1-29

3 10 o - -
S £ ATLAS 2011-2012 E+to -
"é [ \s-7Tev:[Ldt=4p4sm’ L 1t20 i
S | \s=8Tev:[ldt=58-591" — Observed g
~ | A Bkg. Expected

O b

S

9]

()}

- CL, Limits —
110 150 200 300 400 500
m,, [GeV]

Not exactly what we described earlier as these are “CLs” limits;
see, e.g., GDC, arX1v:1307.2487.
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Profile likelihood with b uncertain
This 1s the well studied “on/off” problem: Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; L1 and Ma 1983,...
Measure two Poisson distributed values:

n ~ Poisson(s+b) (primary or “search” measurement)

m ~ Poisson(zb) (control measurement, 7 known)

The likelihood function is

-~ ¢
n! m!

L(S, b) — (S + b) e—(s-}-b) (Tb) —7b

Use this to construct profile likelihood ratio (b 1s nuisance

parmeter): L(0 lﬁ(O))

L(&,b)

A(0) =
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Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

§ = n—m/r,
b = m/r
1‘;(8) _ ”+m—(1+7)3+\/(n+m—(1+T)s)2+4(1+7)3m.

2(1+171)
and 1n particular to test for discovery (s = 0),

n-+m
1+7

G. Cowan Statistical Data Analysis / Stat 4
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Tests of asympotic formulae
Cowan, Cranmer, Gross, Vitells, EPJC 71 (2011) 1554; arXiv:1007.1727

(a) §1OE|||||||? 10g— T RARRE AR AR (b)
= 1k —f(q,l0) 5 1 s=10,b=10,t=1
T 0 h —b=2 ] : :

LY b=5 =

107 _20 %

107% I

107% =

107 é

107° .

107 LN 1

10—81l|lllllllllllllll lllllIElll.:l_illlllll: 10 llllllllllllllllllllllllllll'—'-l--illlllll—
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Figure 3: (a) The pdf f(go|0) for the counting experiment. The solid curve shows f(gp|0) from
Eq. (49) and the histograms are from Monte Carlo using different values of b (see text). (b) The
distributions f(qo|0) and f(qo|1) from both the asymptotic formulae and Monte Carlo simulation

based on s =10, b =10, 7 = 1.
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Tests of asympotic formulae
Cowan, Cranmer, Gross, Vitells, EPJC 71 (2011) 1554; arXiv:1007.1727

a +1|||||||| +1|||||||| b
() . S=6,b=9,’t=1 . 3 ()

107"

.....

.....

1073 1072

N

q1,A ‘
10—3IIlIIIIlIIlllIIIIlllllllllllllllllllll-l

o 1 2 3 4 5 6 7 8

10—\lIlIIlIIlIlIIIIIIIIIIIIIIIIIII llllllllllll

o 1 2 3 4 5 6 7 8
q, q

Figure 5: (a) The pdfs f(g1]/1) and f(q1|0) for the counting experiment. The solid curves show the
formulae from the text, and the histograms are from Monte Carlo using s =6, b =9, 7 = 1. (b)

The same set of histograms with the alternative statistic g1. The oscillatory structure evident in the
histograms is a consequence of the discreteness of the data. The vertical line indicates the Asimov
value of the test statistic corresponding to p' = 0.
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Expected (or median) significance / sensitivity

When planning the experiment, we want to quantify how sensitive
we are to a potential discovery, e.g., by given median significance
assuming some nonzero strength parameter (',

So for p-value, need f(g,|0), for sensitivity, will need f(g,|i "),
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Expected discovery significance for counting
experiment with background uncertainty
I. Discovery sensitivity for counting experiment with 5 known:

S

(a) 7

(b) Profile likelihood 2( N <1 f) B )
ratio test & Asimov: (s+6)In{1+ b °

[I. Discovery sensitivity with uncertainty in b, o,
S

(a) \/b+ of

(b) Profile likelihood ratio test & Asimov:

1/2
(s +b)(b+ of) b? ots
[2((s+b)ln B+ (s 1 b)o? Ugln 1+b(b—|—a§)
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Counting experiment with known background

Count a number of events n ~ Poisson(s+b), where
s = expected number of events from signal,

b = expected number of background events.

To test for discovery of signal compute p-value of s = 0 hypothesis,

o0 bn
p=P(n2noslb) = Y —e " =1-Fa(2b;2ncbs)

N=MNghs

Usually convert to equivalent significance: Z = & (1 — p)
where @ 1s the standard Gaussian cumulative distribution, e.g.,
Z>5 (a5 sigma effect) means p <2.9 x107.

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/\b for expected discovery significance

For large s + b, n — x ~ Gaussian(,0) , 4 =s + b, 6= (s + b).

For observed value x_, p-value of s = 0 1s Prob(x > x| s = 0),:

4170)s_b
=1 ()

Significance for rejecting s = 0 1s therefore

obs

—. Tobs — b
Zy =71 —po) = 7
Expected (median) significance assuming signal rate s 1s
S
median|Zg|s + b] = —
[Zols +0) 7
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Better approximation for significance

Poisson likelihood for parameter s 1s

L(s) = BT o For now
" no nuisance
To test for discovery use profile likelihood ratio: 1‘3/arams.
—21In A(0) §>0, A
qO = A(S) _ L(S,AH(AS))
0 §<0. L(4,0)

So the likelihood ratio statistic for testing s = 0 1s

L(0)
L(3)

qgo = —21In = 2 (n ln% + b — n) for n > b, 0 otherwise
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem),

b

Zz\/2<nlnﬁ+b—n> for n > band Z = 0 otherwise.

To find median[Z]s], let n — s + b (i.e., the Asimov data set):

Za =\/2 ((s+b)ln(1+%> —s)

This reduces to s/\b for s <<b.
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n ~ Poisson(s+b), median significance,
assuming s, of the hypothesis s =0

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
8

0

“Exact” values from MC,
jumps due to discrete data.

med[Z |1]
m.

Asimov \/qo, A good approx.
for broad range of s, b.

s/Nb only good for s « b.
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Extending s/\b to case where b uncertain

The intuitive explanation of s/Vb is that it compares the signal,
s, to the standard deviation of # assuming no signal, Vb.

Now suppose the value of b 1s uncertain, characterized by a
standard deviation o,.

A reasonable guess is to replace \b by the quadratic sum of
\b and g,, 1.€.,

S

This has been used to optimize some analyses e.g. where
g, cannot be neglected.

med[Z|s] =

G. Cowan Statistical Data Analysis / Stat 4
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Adding a control measurement for b

(The “on/off” problem: Cranmer 2005; Cousins,
Linnemann, and Tucker 2008; Li and Ma 1983,...)

Measure two Poisson distributed values:
n ~ Poisson(s+b) (primary or “search” measurement)
m ~ Poisson(zb) (control measurement, T known)

The likelihood function is

-~ ¢
n! m!

L(S, b) — (S T b) e—(s-{—b) (Tb) —7b

Use this to construct profile likelihood ratio (b 1s nuisance

parmeter): L(0 I§(O))

M0) = L(3,b)
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Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

§ = n—m/r,
b = m/r
1‘;(8) _ ”+m—(1+7)3+\/(n+m—(1+T)s)2+4(1+7)3m.

2(1+171)
and 1n particular to test for discovery (s = 0),

n-+m
1+7
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Asymptotic significance

Use profile likelihood ratio for g, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Z = /B

- [~z (om [ ] o )

for n > b and Z = 0 otherwise.

Essentially same as 1n:

Robert D. Cousins, James T. Linnemann and Jordan Tucker, NIM A 595 (2008) 480
501; arXiv:physics/0702156.

Tipei Li and Yugian Ma, Astrophysical Journal 272 (1983) 317-324.
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Asimov approximation for median significance

To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

n—s+b>b

m — tb

A = [—2 ((S +b)In [(iiil)(-::_)z)] +7bln [1 + a -:'r)b])rm

. - > b .
Or use the variance of b =m/t, V[b] =0 = — , to eliminate z:
T

2
LA

5
O

(s +b)(b+ of)
b2 + (s + b)o?

o2s

b(b+ of)

1+

I

A = [2 ((s—l—b) In
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Limiting cases

Expanding the Asimov formula in powers of s/b and
0,%/b (= 1/t) gives

S

Zp = (1+O(s/b) + O /b))

\/b—I—ag

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated
with the Asimov data set.
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G. Cowan

med[Z|s]

Testing the formulae: s =15

8

s=5
c,/b=0.205

1 10

Statistical Data Analysis / Stat 4
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Using sensitivity to optimize a cut

(a) 720 S _ (b)
% — Z, Z : — signal
-—— background
£ 15k sl\’b+c§ 15
...... s=157 s=80
b=16 b=0.20
10F 1 |
\ > >
0.5
%20 20 80 80 100 % 20 20 60 80 100
Xeut X

Figure 1: (a) The expected significance as a function of the cut value zcy; (b) the distributions of
signal and background with the optimal cut value indicated.
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Return to interval estimation

Suppose a model contains a parameter u; we want to know which
values are consistent with the data and which are disfavoured.

Carry out a test of size o for all values of u.

The values that are not rejected constitute a confidence interval
for 1 at confidence level CL=1 — a.

The probability that the true value of u will be rejected 1s
not greater than o, so by construction the confidence interval
will contain the true value of ¢ with probability > 1 — a.

The interval depends on the choice of the test (critical region).

If the test 1s formulated in terms of a p-value, p , then the
confidence interval represents those values ot u for which p, > a.

To find the end points of the interval, set p, = a and solve for .
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Test statistic for upper limits
cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554.

For purposes of setting an upper limit on 1 one can use

{—2111 Ap) fp<p L, 0)
Qp = .

>

where  A(pt) = ——
0 L > i L(j1,0)

I.e. when setting an upper limit, an upwards fluctuation of the data
1s not taken to mean incompatibility with the hypothesized u:

From observed g, find p-value:  py = / f(qulp) dqy

qy.,0bs

Large sample approximation: | p, = 1 — @(\/ﬁ)

95% CL upper limit on i 1s highest value for which p-value is
not less than 0.05.
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Monte Carlo test of asymptotic formulae

Consider again n ~ Poisson (s + b), m ~ Poisson(7b)
Use g, to find p-value of hypothesized u values.

E.g. f(g,|l) for p-value of u=I. 1— s=6,b=9,1=1 3
Typically interested in 95% CL, i.e., :
p-value threshold = 0.05, 1.e.,

107k
g, =2.69or Z, =g, = 1.64. :

Median[g, |0] gives “exclusion

. ° ° —2._
sensitivity”. 107

Here asymptotic formulae good !
forS:6,b:9. 103t Lol Lo Lo
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Low sensitivity to u

It can be that the effect of a given hypothesized u 1s very small
relative to the background-only (u = 0) prediction.

This means that the distributions f(g, |«) and f(g,|0) will be
almost the same:

\ /‘/‘HE»I/‘)
k —» critical reqion

\/\/‘F(‘L/«|°>

¥ b
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Having sufficient sensitivity

In contrast, having sensitivity to 4 means that the distributions
Mg |p) and f(g,|0) are more separated:

s € vidical » ey'on

That 1s, the power (probability to reject ¢ 1f 1 = 0) 1s substantially
higher than a. Use this power as a measure of the sensitivity.
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Spurious exclusion

Consider again the case of low sensitivity. By construction the
probability to reject u 1f 1 1s true 1s a (e.g., 5%).

And the probability to reject ¢ 1f 4 = 0 (the power) 1s only slightly
greater than a.

This means that with
+( N /\) probability of around o = 5%
i (slightly higher), one excludes
—» critical region  hypotheses to which one has
essentially no sensitivity (e.g.,

5 Wﬁc(wo) my; = 1000 TeV).

nis “Spurious exclusion™
2z b
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Ways of addressing spurious exclusion

The problem of excluding parameter values to which one has
no sensitivity known for a long time; see e.g.,

Virgil L. Highland, Estimation of Upper Limits from Experimental Data, July 1986,
Revised February 1987, Temple University Report C00-3539-38.

In the 1990s this was re-examined for the LEP Higgs search by
Alex Read and others

T. Junk, Nucl. Instrum. Methods Phys. Res., Sec. A 434, 435 (1999); A.L. Read, J.
Phys. G 28, 2693 (2002).

and led to the “CL_” procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by
the particular choice of critical region.
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The CL, procedure

In the usual formulation of CL , one tests both the x = 0 (b) and
w1 > 0 (us+b) hypotheses with the same statistic 9 =-2In L_,/L,:

0.1

-  /(Ob)

0.06

(Ol s+b)

0.04

f(Q)

pb 0.02 I
\_

0
-80
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The CL, procedure (2)

As before, “low sensitivity” means the distributions of O under
b and s+b are very close:

§_f<Q|s+b) e

J(QIb)

fQ)

04

0.3
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The CL, procedure (3)

The CL, solution (A. Read et al.) 1s to base the test not on
the usual p-value (CL,,), but rather to divide this by CL,
(~ one minus the p-value of the h-only hypothesis), i.e.,

Define:

Reject s+b
hypothesis if:

(-: IJS < ¥

G. Cowan

0.08

T s+b
0.06 ——f(Q\l Q.. f(Q'b)
l_CLb 002 B CLs+b
_pb \: :ps+b

Q
Increases “effective” p-value when the two

distributions become close (prevents
exclusion if sensitivity 1s low).
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Setting upper limits on y = o/og,,

Carry out the CLs procedure for the parameter y = o/og,,,
resulting in an upper limit 4.

In, e.g., a Higgs search, this 1s done for each value of my,.

At a given value of my, we have an observed value ot y,,, and
we can also find the distribution f(x,,|0):

+10 (green) and £2 0 (yellow)
bands from toy MC;

Vertical lines from asymptotic
formulae.
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How to read the green and yellow limit plots
For every value of my, find the CLs upper limit on u.

Also for each my,, determine the distribution of upper limits y,,, one
would obtain under the hypothesis of u = 0.

The dashed curve is the median g, and the green (yellow) bands
give the + 1o (20) regions of this distribution.

> 10 ATLAS 2011 J‘Ldt~1.04—4.9fb" _
o e — Observed =
E - @_7 Tev -=== Bkg. Expected
:: - O+ 10
o
PN
To) 1 e " AR, S -
@ - 3 ATLAS, Phys. Lett.
- 7 B 710 (2012) 49-66
woe-@ o ClLimits_
110 150 200 300 400 500 600
m,, [GeV]
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Choice of test for limits (2)

In some cases u = 0 1s no longer a relevant alternative and we
want to try to exclude u on the grounds that some other measure of
incompatibility between 1t and the data exceeds some threshold.

If the measure of incompatibility 1s taken to be the likelihood ratio
with respect to a two-sided alternative, then the critical region can
contain both high and low data values.

— unified intervals, G. Feldman, R. Cousins,
Phys. Rev. D 57, 3873—3889 (1998)

The Big Debate is whether to use one-sided or unified intervals

in cases where small (or zero) values of the parameter are relevant
alternatives. Professional statisticians have voiced support

on both sides of the debate.
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Unified (Feldman-Cousins) intervals

We can use directly

Q»

L (IU
L(j.

)
)

t, =—2InA(p) where Ap) =

>

as a test statistic for a hypothesized L.

Large discrepancy between data and hypothesis can correspond
either to the estimate for 1 being observed high or low relative

to [L.
This 1s essentially the statistic used for Feldman-Cousins intervals

(here also treats nuisance parameters).
G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

Lower edge of interval can be at ¢ = 0, depending on data.
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Distribution of ”

Using Wald approximation, f (#,/1') 1s noncentral chi-square
for one degree of freedom:

1= e (45552 on (252

Special case of 1= ' 1s chi-square for one d.o.f. (Wilks).

The p-value for an observed value of 7, 1s
pp=1=F(t,lp)=2(1-2(/t,))

and the corresponding significance 1s

Z, =0 1—-p,) =012 (/1) — 1)
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Upper/lower edges of F-C interval for u versus b

20

Upper end of conf. int. for u

i

.
-
-

h

for n ~ Poisson(u+b)

Feldman & Cousins, PRD 57 (1998) 3873
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Lower edge may be at zero, depending on data.

For n =0, upper edge has (weak) dependence on b.
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Feldman-Cousins discussion

The 1mitial motivation for Feldman-Cousins (unified) confidence
intervals was to eliminate null intervals.

The F-C limits are based on a likelihood ratio for a test of u
with respect to the alternative consisting of all other allowed values
of 1 (not just, say, lower values).

The interval’s upper edge 1s higher than the limit from the one-
sided test, and lower values of © may be excluded as well. A
substantial downward fluctuation in the data gives a low (but
nonzero) limit.

This means that when a value of u 1s excluded, it 1s because
there 1s a probability o for the data to fluctuate either high or low
in a manner corresponding to less compatibility as measured by
the likelihood ratio.
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