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Statistical Data Analysis: Lecture 6

Probability, Bayes’ theorem, random variables, pdfs
Functions of r.v.s, expectation values, error propagation
Catalogue of pdfs

The Monte Carlo method

Statistical tests: general concepts

Test statistics, multivariate methods
Goodness-of-fit tests

Parameter estimation, maximum likelihood

More maximum likelihood

Method of least squares

Interval estimation, setting limits

Nuisance parameters, systematic uncertainties

Examples of Bayesian approach
tba
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[ .inear decision boundaries

A linear decision boundary is only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Nonlinear transtormation ot inputs

We can try to find a transformation, X, ,...,X — (pl(x '), ., (pm(_ X)
so that the transformed “‘feature space™ variables can be separated

better by a linear boundary:
_1 | Here, guess fixed
(Plztan (lexl) _— basis functions

' el

> 5 (no free parameters)
Pr=\X1T Xy
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Nonlinear test statistics

The optimal decision boundary may not be a hyperplane,

— nonlinear test statistic (%)

Multivariate statistical methods A

are a Big Industry:

Neural Networks,
Support Vector Machines, oo
Kernel density methods,

Particle Physics can benefit from progress in Machine Learning.
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Introduction to neural networks

Used in neurobiology, pattern recognition, financial forecasting, ...
Here, neural nets are just a type of test statistic.

Suppose we take #(x) to have the form lquStl,C
sigmoid
mn
t(%) = s (a,o + > ai:vz-> . where s(u) = (14e ) 1.
i=1
X1
This 1s called the
single-layer perceptron. O £ (x)
T

S() is monotonic . output node (could

. . L be more than one)
— equivalent to linear #(x) "

input layer
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The multi-layer perceptron

Generalize from one layer
to the multilayer perceptron:

hidden layer

The values of the nodes in the

n
intermediate (hidden) layer are hi(Z) = s (’wio + > ’wz'jivj) ,
=1

mn
and the network output is given by  t(Z) = s (ao + > aihi(f)> :
i=1

a;, w;; = weights (connection strengths)
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Neural network discussion

Easy to generalize to arbitrary number of layers.

Feed-forward net: values of a node depend only on earlier layers,
usually only on previous layer (“network architecture™).

More nodes — neural net gets closer to optimal #(x), but
more parameters need to be determined.

Parameters usually determined by minimizing an error function,
€ = Bol(t — )2 + B1[(t — t(1)?]

where ¢ © | ¢ () are target values, e.g., 0 and 1 for logistic sigmoid.
Expectation values replaced by averages of training data (e.g. MC).

In general training can be difficult; standard software available.
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Neural network example from LEP II

Signal: ete” — W*W-
Background: e*e™ — qqgg (4 less well separated hadron jets)
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(Garrido, Juste and Martinez, ALEPH 96-144)
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Some 1ssues with neural networks

In the example with WW events, goal was to select these events
so as to study properties of the W boson.

Needed to avoid using input variables correlated to the
properties we eventually wanted to study (not trivial).

In principle a single hidden layer with an sufficiently large number of
nodes can approximate arbitrarily well the optimal test variable (likelihood
ratio).

Usually start with relatively small number of nodes and increase
until misclassification rate on validation data sample ceases
to decrease.

Usually MC training data 1s cheap -- problems with getting stuck in

local minima, overtraining, etc., less important than concerns of systematic
differences between the training data and Nature, and concerns about

the ease of interpretation of the output.
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Probability Density Estimation (PDE) techniques

Construct non-parametric estimators of the pdfs f(Z|Hg), f(Z|H1)

and use these to construct the likelithood ratio

(€|Ho)
(€|H1)

Nt
(7)) =5

(n-dimensional histogram 1s a brute force example of this.)

More clever estimation techniques can get this to work for
(somewhat) higher dimension.

See e.g. K. Cranmer, Kernel Estimation in High Energy Physics, CPC 136 (2001) 198; hep-ex/0011057; T. Carli
and B. Koblitz, A multi-variate discrimination technique based on range-searching,
NIM A 501 (2003) 576; hep-ex/0211019
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Kernel-based PDE (KDE, Parzen window)

Consider d dimensions, N training events, X, ..., Xy,
estimate f (x) with

N iz =
@ =g LK (th>

" bandwidth
kernel (smoothing parameter)

1 2
—|Z2/2

Use e.g. Gaussian kernel: K(Z) = (2m)d/2

Need to sum N terms to evaluate function (slow);
faster algorithms only count events in vicinity of x
(k-nearest neighbor, range search).
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Correlation vs. independence

In a general a multivariate distribution p(x) does not factorize into a
product of the marginal distributions for the individual variables:

n holds only if the
() — - e
P(l)—g pix;) components of x

are independent

Most importantly, the components of x will generally have nonzero
covariances (1.e. they are correlated):

|E|x

1

]#0

V,.J:cov[x,.,xj]:E[x,.xj]—E[x j
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Decorrelation of input variables

But we can define a set of uncorrelated input variables by a
linear transformation, i.e., find the matrix A such that for V=4 X
the covariances cov|y, yi] =0:

::,:' 6 I 1 1 1 ﬁ: 6 1 1 1 1
4 - a - =
0 _ 0 ;
2 | “ . 2 .
% o (@ = b) |
6 1 1 1 1 _6 1 1 1 1
6 4 2 0 2 4 6 -6 4 2 0 2 4 6

For the following suppose that the variables are “decorrelated” in
this way for each of p(x|H ) and p(x|H ) separately (since in general

their correlations are different).
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Decorrelation 1s not enough

But even with zero correlation, a multivariate pdf p(x) will in general
have nonlinearities and thus the decorrelated variables are still not

independent.
. pdf with zero covariance but
: E kP components still not
S ‘/—/ independent, since clearly
- ] o plx 1 xz) )
AR p(xylx,)= o 7 Pa(x)
— _ and therefore
1 p(xyx,)# pi(x;) palx,)
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Naive Bayes

But if the nonlinearities are not too great, it is reasonable to first
decorrelate the inputs and take as our estimator for each pdf

j)(x):H f)i(xi)
i=1

So this at least reduces the problem to one of finding estimates of
one-dimensional pdfs.

The resulting estimated likelihood ratio gives the Naive Bayes classifier
(in HEP sometimes called the “likelihood method™).

Lectures on Statistical Data Analysis
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Decision trees

Out of all the input variables, find the one for which with a single cut
gives best improvement in signal purity:

E . W.

signal !

E , M«’.-I—E W,
signal ! background !

where w.. 1s the weight of the ith event.

P=

Resulting nodes classified as either signal/
background.

[terate until stop criterion reached based on
e.g. purity or minimum number of events S B
in a node. 71 2/9

The set of cuts defines the decision Example by MiniBooNE experiment,
boundary. B. Roe et al., NIM 543 (2005) 577
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Finding the best single cut

The level of separation within a node can, e.g., be quantified by
the Gini coefficient, calculated from the (s or b) purity as:

G =p(l—p)

For a cut that splits a set of events a into subsets b and ¢, one
can quantify the improvement in separation by the change in
weighted Gini coefficients:

A =WoGa—WiGp—WeGe  where, e, Wa= 3 w;
1€
Choose e.g. the cut to the maximize A; a variant of this
scheme can use instead of Gini e.g. the misclassification rate:

c=1—max(p, 1 —p)
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Decision trees (2)

The terminal nodes (leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if xesignalregion,—1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.

G. Cowan Lectures on Statistical Data Analysis
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that is more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X oot X event data vectors (each x multivariate)

1 N

Y-y, true class labels, +1 for signal, —1 for background

v 1o
W, W event weights
Now define a rule to create from this an ensemble of training samples

I'.T, ..., derive a classifier from each and average them.

G. Cowan Lectures on Statistical Data Analysis
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AdaBoost

A successtul boosting algorithm is AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7 using the original
X pouers X event data vectors
Voprens V true class labels (+1 or -1)
(1) (1)

W W weig
Vo s W event weights N

with the weights equal and normalized such that Z W(;.l) =1.
i=1

Train the classifier f (x) (e.g. a decision tree) using the weights w't

SO as to minimize the classification error rate.,
N
51—2 w;, Iy f1(x;)<0),
i=1

where I[(X) =1 if X 1s true and 1s zero otherwise.
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Updating the event weights (AdaBoost)

Assign a score to the kth classifier based on its error rate:

1-¢,

, =In
k ‘

Define the training sample for step k+1 from that of £ by updating
the event weights according to

| | — o fr(x;)yil2
(k+1)_ (k) €
Wi =W
/ /Z k¥~ Normalize so that
[ = event index k = traininge sample index (k+1)__
1
K
Iterate K times, final classifieris y(X)=>_ o« f(x,T,)

k=1
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Overtraining

If decision boundary is too flexible it will conform too closely

to the training points — overtraining.

Monitor by applying classifier to independent test sample.

training sample

>

G. Cowan

independent test sample
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Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred
frees.

G. Cowan
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Boosted decision tree summary

Advantage of boosted decision tree 1s it can handle a large number
of inputs. Those that provide little/no separation are rarely used as tree
splitters are effectively 1gnored.

Easy to deal with inputs of mixed types (real, integer, categorical...).

If a tree has only a few leaves it 1s easy to visualize (but rarely use only a
single tree).

There are a number of boosting algorithms, which differ primarily in the
rule for updating the weights (e-Boost, LogitBoost....)

Other ways of combining weaker classifiers: Bagging (Boostrap-
Aggregating), generates the ensemble of classifiers by random sampling
with replacement from the full training sample.

G. Cowan Lectures on Statistical Data Analysis 24



Comparing multivariate methods (TMVA)

Background rejection versus Signal efficiency TMVA

1 LI L LI L LI LI L LI | L L.
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Choose the best one!
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Software for multivariate analysis

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, [. Narsky, physics/0507143

Further info from www. hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported

G. Cowan Lectures on Statistical Data Analysis
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2" ed., Wiley, 2001
A. Webb, Statistical Pattern Recognition, 2™ ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2005, 2007....) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confId=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)

www-group.slac.stanford.edu/sluo/Lectures/Stat2006_Lectures.html

G. Cowan Lectures on Statistical Data Analysis
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Wrapping up lecture 6

We looked at statistical tests and related issues:
discriminate between event types (hypotheses),
determine selection efficiency, sample purity, etc.

Some modern (and less modern) methods were mentioned:

Fisher discriminants, neural networks,
PDE, KDE, decision trees, ...

Next we will talk about significance (goodness-of-fit) tests:
p-value expresses level of agreement between data
and hypothesis
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Extra slides
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Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank of

mineral o1l exposed to a beam of _ Electron candidate
. . zzy ring, short track
neutrinos and viewed by 1520 Vo~ — &
photomultiplier tubes: w
P

MiniBooNE Detector

Muon candidate
sharp ring, filled in

Ay
wt

Pion candidate
_two "e-like" rings.

i!.:r.-ﬁ"‘ ~— =il ‘;J.
. . z
Search for v to v oscillations e P
required particle 1.d. using 1 <A

information from the PMTs. H.J. Yang, MiniBooNE PID, DNP06
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BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, u or ).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

l | | | | I I | | | | | | | I I | | |

1 _: e un-weighted nusclassified event rate '
08 _: a weighted misclassified event rate. err_ _

: ] * o,= B*In((1-err )lerr_). !3.=El.j
S 06 v haen .. b ' “
B ] -

S 04 -
0.2 —:
I:::I _I I I I I I I I I I I I I I I I I I I I i
0 200 400 G00 800 1000

Number of Tree [terations

B. Roe et al., NIM 543 (2005) 577
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Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the
update rule for the weights.
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Using classifier output for discovery

sienal search
o 1 NO) | —> region
background background
excess?
Y Y cut Y
Normalized to unity Normalized to expected

number of events

Discovery = number of events found in search region incompatible
with background-only hypothesis.

p-value of background-only hypothesis can depend crucially distribution f
(y|b) in the "search region".

G. Cowan Lectures on Statistical Data Analysis



Top quark discovered in pairs, but
SM predicts single top production.

Single top quark production (CDFEF/DO)

Use many inputs based on
jet properties, particle 1.d., ...

G. Cowan

W+

Pair-produced tops are now
a background process.

antiproton
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Different classifiers for single top

500, | 500

.~ (b)  Ztjets W tt— ¢ 1 = (a) Data ¢ wbb Il
g I Multijets Il tt—(+jets IH }_’ | tb +tqgb Il Wecc IR
. 400 - w 400 Wjj+We
c 150 c 150
S o i
W w 300 100
- 50 .
200 __ %.6 0.7 0.8 0.9 1
100 D@ 2.3 fb'
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Bayesian Neural Networks Qutput Boosted Decision Trees Output

Also Naive Bayes and various approximations to likelihood ratio,....

Final combined result is statistically significant (>50 level) but not
easy to understand classifier outputs.
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