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Statistical Data Analysis:  Lecture 8 
1  Probability, Bayes’ theorem, random variables, pdfs 
2  Functions of r.v.s, expectation values, error propagation 
3  Catalogue of pdfs 
4  The Monte Carlo method 
5  Statistical tests:  general concepts 
6  Test statistics, multivariate methods 
7  Significance tests 
8  Parameter estimation, maximum likelihood 
9  More maximum likelihood 
10  Method of least squares 
11  Interval estimation, setting limits 
12  Nuisance parameters, systematic uncertainties 
13  Examples of Bayesian approach 
14  tba 
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Pre-lecture comments on problem sheet 7 
Problem sheet 7 involves modifying some C++ programs 
to create a Fisher discriminant and neural network to separate 
two types of events (signal and background): 

Each event is characterized 
by 3 numbers: x, y and z. 

Each "event" (instance of x,y,z) 
corresponds to a "row" in an 
n-tuple.  (here, a 3-tuple). 

In ROOT, n-tuples are stored 
in objects of the TTree class. 
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Parameter estimation 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

r.v. 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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An estimator for the mean (expectation value) 

Parameter: 

Estimator: 

We find: 

(‘sample mean’) 
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An estimator for the variance 

Parameter: 

Estimator: 

(factor of n-1 makes this so) 

(‘sample 
variance’) 

We find: 

where 
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The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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Functions of ML estimators 

Suppose we had written the exponential pdf as 
i.e., we use λ = 1/τ.  What is the ML estimator for λ? 

For a function α(θ) of a parameter θ, it doesn’t matter 
whether we express L as a function of α or θ. 

The ML estimator of a function α(θ) is simply   

So for the decay constant we have 

Caveat:    is biased, even though is unbiased. 

(bias →0 for n →∞) Can show 
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Example of ML:  parameters of Gaussian pdf 
Consider independent x1, ..., xn,  with xi ~ Gaussian (µ,σ2) 

The log-likelihood function is 
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Example of ML:  parameters of Gaussian pdf (2) 
Set derivatives with respect to µ, σ2 to zero and solve, 

We already know that  the estimator for µ  is unbiased. 

But we find, however, so ML estimator 

for σ2 has a bias, but b→0 for n→∞.  Recall, however, that 

is an unbiased estimator for σ2. 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Wrapping up lecture 8 
We’ve seen some main ideas about parameter estimation: 

 estimators, bias, variance, 

and introduced the likelihood function and ML estimators. 

Also we’ve seen some ways to determine the variance  
(statistical error) of estimators: 

 Monte Carlo method 
 Using the information inequality 
 Graphical Method 

Next we will extend this to cover multiparameter problems, 
variable sample size, histogram-based data, ... 


