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Statistical Data Analysis:  Lecture 9 
1  Probability, Bayes’ theorem, random variables, pdfs 
2  Functions of r.v.s, expectation values, error propagation 
3  Catalogue of pdfs 
4  The Monte Carlo method 
5  Statistical tests:  general concepts 
6  Test statistics, multivariate methods 
7  Significance tests 
8  Parameter estimation, maximum likelihood 
9  More maximum likelihood 
10  Method of least squares 
11  Interval estimation, setting limits 
12  Nuisance parameters, systematic uncertainties 
13  Examples of Bayesian approach 
14  tba 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Example of ML with 2 parameters 
Consider a scattering angle distribution with x = cos θ, 

or if xmin < x < xmax, need always to normalize so that  

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95,  
generate n = 2000 events with Monte Carlo. 
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Example of ML with 2 parameters:  fit result 
Finding maximum of ln L(α, β) numerically (MINUIT) gives 

N.B.  No binning of data for fit, 
but can compare to histogram for 
goodness-of-fit (e.g. ‘visual’ or χ2).  

(Co)variances from (MINUIT routine  
HESSE) 
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Two-parameter fit:  MC study 
Repeat ML fit with 500 experiments, all with n = 2000 events: 

Estimates average to ~ true values; 
(Co)variances close to previous estimates; 
marginal pdfs approximately Gaussian. 
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The ln Lmax - 1/2 contour 

For large n, ln L takes on quadratic form near maximum: 

The contour  is an ellipse: 
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(Co)variances from ln L contour 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

Correlations between estimators result in an increase 
in their standard deviations (statistical errors). 

The α, β plane for the first 
MC data set 
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Extended ML 
Sometimes regard n not as fixed, but as a Poisson r.v., mean ν. 

Result of experiment defined as: n, x1, ..., xn. 

The (extended) likelihood function is: 

Suppose theory gives ν = ν(θ), then the log-likelihood is  

where C represents terms not depending on θ. 
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Extended ML (2) 

Extended ML uses more info → smaller errors for  

Example:  expected number of events  
where the total cross section σ(θ) is predicted as a function of 
the parameters of a theory, as is the distribution of a variable x.  

If ν does not depend on θ but remains a free parameter, 
extended ML gives:  

Important e.g. for anomalous couplings in e+e- → W+W-	
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Extended ML example 
Consider two types of events (e.g., signal and background) each  
of which predict a given pdf for the variable x:  fs(x) and fb(x). 

We observe a mixture of the two event types, signal fraction = θ,  
expected total number = ν, observed total number = n. 

Let goal is to estimate µs, µb. 

→ 
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Extended ML example (2) 

Maximize log-likelihood in  
terms of µs and µb: 

Monte Carlo example 
with combination of 
exponential and Gaussian: 

Here errors reflect total Poisson 
fluctuation as well as that in  
proportion of signal/background. 
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Extended ML example:  an unphysical estimate 
A downwards fluctuation of data in the peak region can lead 
to even fewer events than what would be obtained from 
background alone. 

Estimate for µs here pushed 
negative (unphysical). 
 
We can let this happen as  
long as the (total) pdf stays 
positive everywhere. 
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Unphysical estimators (2)  
Here the unphysical estimator is unbiased and should  
nevertheless be reported, since average of a large number of  
unbiased estimates converges to the true value (cf. PDG). 

Repeat entire MC 
experiment many times,  
allow unphysical estimates:  
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ML with binned data 
Often put data into a histogram: 

Hypothesis is  where 

If we model the data as multinomial (ntot constant),   

then the log-likelihood function is: 
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ML example with binned data 
Previous example with exponential, now put data into histogram: 

Limit of zero bin width → usual unbinned ML. 

If ni treated as Poisson, we get extended log-likelihood: 



G. Cowan  Lectures on Statistical Data Analysis  16 

Relationship between ML and Bayesian estimators 
In Bayesian statistics, both θ and x are random variables: 

Recall the Bayesian method: 

Use subjective probability for hypotheses (θ); 

before experiment, knowledge summarized by prior pdf π(θ); 

use Bayes’ theorem to update prior in light of data: 

Posterior pdf (conditional pdf for θ given x) 
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ML and Bayesian estimators (2) 
Purist Bayesian:  p(θ | x) contains all knowledge about θ. 

Pragmatist Bayesian:  p(θ | x) could be a complicated function, 

→ summarize using an estimator  

Take mode of p(θ | x) ,  (could also use e.g. expectation value) 

What do we use for π(θ)?  No golden rule (subjective!), often 
represent ‘prior ignorance’ by π(θ) = constant, in which case 

But... we could have used a different parameter, e.g., λ = 1/θ, 
and if prior πθ(θ) is constant, then πλ(λ) is not!   

 ‘Complete prior ignorance’ is not well defined. 
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Wrapping up lecture 9 

We’ve now seen several examples of the method of Maximum 
Likelihood: 

 multiparameter case 
 variable sample size (extended ML) 
 histogram-based data 

and we’ve seen the connection between ML and Bayesian 
parameter estimation. 

Next we will consider a special case of ML with Gaussian 
data and show how this leads to the method of Least Squares. 
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Extra slides 
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Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In a Subjective Bayesian analysis, using  objective priors can be an  
important part of the sensitivity analysis. 
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Priors from formal rules (cont.)  
In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  For a review see: 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
 energy physics, arxiv:1002.1111 (Feb 2010) 
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Jeffreys’ prior 
According to Jeffreys’ rule, take prior according to 

where 

is the Fisher information matrix. 

One can show that this leads to inference that is invariant under 
a transformation of parameters. 

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson  
mean µ it is proportional to 1/√µ.  
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Jeffreys’ prior for Poisson mean 

Suppose n ~ Poisson(µ).  To find the Jeffreys’ prior for µ, 

So e.g. for µ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b.  But this is not designed as a degree of belief  about s. 


