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Outline 
Lecture 1:  Introduction and review of fundamentals 

 Probability, random variables, pdfs 
 Parameter estimation, maximum likelihood 
 Introduction to statistical tests 

Lecture 2:  More on statistical tests 
 Discovery, limits 
 Bayesian limits 

Lecture 3:  Framework for full analysis 
 Nuisance parameters and systematic uncertainties 
 Tests from profile likelihood ratio 

Lecture 4:  Further topics 
 More parameter estimation, Bayesian methods 
 Experimental sensitivity 
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Approximate confidence intervals/regions  
from the likelihood function 

G. Cowan  

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio 

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define 

so higher tθ means worse agreement between θ and the data. 

p-value of θ therefore  

need pdf 
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Confidence region from Wilks’ theorem 

G. Cowan  

Wilks’ theorem says (in large-sample limit and providing  
certain conditions hold...) 

chi-square dist. with # d.o.f. =  
# of components in θ = (θ1, ..., θn). 

Assuming this holds, the p-value is 

To find boundary of confidence region set pθ = α and solve for tθ: 

where 
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Confidence region from Wilks’ theorem (cont.) 

G. Cowan  

i.e., boundary of confidence region in θ space is where 

For example, for 1 – α = 68.3% and n = 1 parameter, 

and so the 68.3% confidence level interval is determined by 

Same as recipe for finding the estimator’s standard deviation, i.e., 

is a 68.3% CL confidence interval. 
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Example of interval from ln L 
For n = 1 parameter, CL = 0.683, Qα = 1. 

Parameter estimate and  
approximate 68.3% CL  
confidence interval: 

Exponential example, now with only 5 events: 
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Multiparameter case 

G. Cowan  

For increasing number of parameters, CL = 1 – α decreases for 
confidence region determined by a given  
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Multiparameter case (cont.) 

G. Cowan  

Equivalently, Qα increases with n for a given CL = 1 – α. 
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Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

But what values of ν to use for f (qθ|θ, ν)? 
Fundamentally we want to reject θ only if pθ < α for all ν. 

 → “exact” confidence interval 
 
But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be considered 
(resulting interval for θ “overcovers”). 
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Profile construction (“hybrid resampling”) 

Approximate procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ: 

“double hat” notation means profiled 
value, i.e., parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (θ, ˆ̂ν(θ)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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Large sample distribution of the profile 
likelihood ratio (Wilks’ theorem, cont.) 

Suppose problem has likelihood L(θ, ν), with 

← parameters of interest 

← nuisance parameters 

Want to test point in θ-space.  Define profile likelihood ratio: 

,   where  

and define qθ = -2 ln λ(θ). 

Wilks’ theorem says that distribution f (qθ|θ,ν) approaches the 
chi-square pdf for N degrees of freedom for large sample (and  
regularity conditions), independent of the nuisance parameters ν. 

“profiled” values of ν 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
specified µ

maximize L

Define critical region of test of µ by the region of data space 
that gives the lowest values of λ(µ).  

Important advantage of profile LR is that its distribution becomes 
independent of nuisance parameters in large sample limit. 
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Test statistic for discovery 
Suppose relevant alternative to background-only (µ = 0) is µ ≥ 0. 

So take critical region for test of µ = 0 corresponding to high q0  
and       > 0 (data characteristic for µ ≥ 0). 

That is, to test background-only hypothesis define statistic 

i.e. here only large (positive) observed signal strength is evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂

µ̂
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

use e.g. asymptotic formula 

From p-value get  
equivalent significance, 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formula 

µ = param. of interest 
b = nuisance parameter 
Here take s known, τ = 1. 

Asymptotic formula is  
good approximation to 5σ
level (q0 = 25) already for 
b ~ 20. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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How to read the p0 plot 
The “local” p0 means the p-value of the background-only 
hypothesis obtained from the test of µ = 0 at each individual mH, 
without any correct for the Look-Elsewhere Effect. 

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (µ = 1) at each mH. 

ATLAS, Phys. Lett. B 716 (2012) 1-29 

The blue band gives the 
width of the distribution 
(±1σ) of significances 
under assumption of the 
SM Higgs. 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 
For purposes of setting an upper limit on µ use 

where 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formulae 
Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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How to read the green and yellow limit plots 
For every value of mH, find the upper limit on µ. 

Also for each mH, determine the distribution of upper limits µup one 
would obtain under the hypothesis of µ = 0.   

The dashed curve is the median µup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution. 

ATLAS, Phys. Lett. B 716 (2012) 1-29 
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Extra slides 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 
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Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  Use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 
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Ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure for upper limits. 

Unified intervals also effectively reduce spurious exclusion by 
the particular choice of critical region. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ > 0 (µs+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     

f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Increases “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (Q|b)     f (Q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Setting upper limits on µ = σ/σSM 
Carry out the CLs procedure for the parameter µ = σ/σSM,  
resulting in an upper limit µup. 

In, e.g., a Higgs search, this is done for each value of mH.   

At a given value of mH, we have an observed value of µup, and 
we can also find the distribution f(µup|0): 

±1σ (green) and ±2σ (yellow) 
bands from toy MC; 

Vertical lines from asymptotic 
formulae. 


