TAE 2017

Solutions to problems sheet 1

$\mathbf{1}(\mathbf{a})$ [4 marks] The exponentially distributed time measurements, t_{1}, \ldots, t_{n}, and the Gaussian distributed calibration measurement y are all independent, so the likelihood is simply the product of the corresponding pdfs:

$$
L(\tau, \lambda)=\prod_{i=1}^{n} \frac{1}{\tau+\lambda} e^{-t_{i} /(\tau+\lambda)} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(y-\lambda)^{2} / 2 \sigma^{2}}
$$

The log-likelihood is therefore

$$
\ln L(\tau, \lambda)=-n \ln (\tau+\lambda)-\frac{1}{\tau+\lambda} \sum_{i=1}^{n} t_{i}-\frac{(y-\lambda)^{2}}{2 \sigma^{2}}+C
$$

where C represents terms that do not depend on the parameters and therefore can be dropped. Differentiating $\ln L$ with respect to the parameters gives

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \tau}=-\frac{n}{\tau+\lambda}+\frac{\sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{2}} \\
& \frac{\partial \ln L}{\partial \lambda}=-\frac{n}{\tau+\lambda}+\frac{\sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{2}}+\frac{y-\lambda}{\sigma^{2}}
\end{aligned}
$$

Setting the derivatives to zero and solving for τ and λ gives the ML estimators,

$$
\begin{aligned}
& \hat{\tau}=\frac{1}{n} \sum_{i=1}^{n} t_{i}-y \\
& \hat{\lambda}=y
\end{aligned}
$$

1(b) [4 marks] The variances of $\hat{\lambda}$ and $\hat{\tau}$ and their covariance are

$$
\begin{aligned}
V[\hat{\lambda}] & =V[y]=\sigma^{2}, \\
V[\hat{\tau}] & =V\left[\frac{1}{n} \sum_{i=1}^{n} t_{i}-y\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} V\left[t_{i}\right]+V[y]=\frac{(\tau+\lambda)^{2}}{n}+\sigma^{2} \\
\operatorname{cov}[\hat{\tau}, \hat{\lambda}] & =\operatorname{cov}\left[\frac{1}{n} \sum_{i=1}^{n} t_{i}-y, y\right]=-V[y]=-\sigma^{2},
\end{aligned}
$$

For the covariance we used the fact that t_{i} and y are independent and thus have zero covariance.
$\mathbf{1}(\mathbf{c})$ [$\mathbf{3}$ marks] The standard deviations of $\hat{\tau}$ and $\hat{\lambda}$ can be determined from the contour of $\ln L(\tau, \lambda)=\ln L_{\max }-1 / 2$, as shown in Fig. 1. The standard can be approximated by the distance from the maximum of $\ln L$ to the tangent line to the contour (in either direction).

Figure 1: Illustration of the method to find $\sigma_{\hat{\tau}}$ and $\sigma_{\hat{\lambda}}$ from the contour of $\ln L(\tau, \lambda)=\ln L_{\text {max }}-1 / 2$ (see text).

If λ were to be known exactly, then the standard deviation of $\hat{\tau}$ would be less. This can be seen from Fig. 1, for example, since the distance one need to move τ away from the maximum of $\ln L$ to get to $\ln L_{\max }-1 / 2$ would be less if λ were to be fixed at $\hat{\lambda}$.
$\mathbf{1}(\mathbf{d})$ [5 marks] The second derivatives of $\ln L$ are

$$
\begin{aligned}
\frac{\partial^{2} \ln L}{\partial \tau^{2}} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}} \\
\frac{\partial^{2} \ln L}{\partial \lambda^{2}} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}}-\frac{1}{\sigma^{2}} \\
\frac{\partial^{2} \ln L}{\partial \tau \partial \lambda} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}}
\end{aligned}
$$

Using $E\left[t_{i}\right]=\tau+\lambda$ we find the expectation values of the second derivatives,

$$
\begin{aligned}
E\left[\frac{\partial^{2} \ln L}{\partial \tau^{2}}\right] & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 n(\tau+\lambda)}{(\tau+\lambda)^{3}}=-\frac{n}{(\tau+\lambda)^{2}} \\
E\left[\frac{\partial^{2} \ln L}{\partial \lambda^{2}}\right] & =-\frac{n}{(\tau+\lambda)^{2}}-\frac{1}{\sigma^{2}} \\
E\left[\frac{\partial^{2} \ln L}{\partial \tau \partial \lambda}\right] & =-\frac{n}{(\tau+\lambda)^{2}} .
\end{aligned}
$$

The inverse covariance matrix of the estimators is given by

$$
V_{i j}^{-1}=-E\left[\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right]
$$

where here we can take, e.g., $\theta_{1}=\tau$ and $\theta_{2}=\lambda$. We are given the formula for the inverse of the corresponding 2×2 matrix, and by substituting in the ingredients we find

$$
V=\left(\begin{array}{cc}
\frac{(\tau+\lambda)^{2}}{n}+\sigma^{2} & -\sigma^{2} \\
-\sigma^{2} & \sigma^{2}
\end{array}\right)
$$

which are the same as what was found in (c).

2(a) The likelihood function is given by the binomial distribution evaluated with the single observed value n and regarded as a function of the unknown parameter θ :

$$
L(\theta)=\frac{N!}{n!(N-n)!} \theta^{n}(1-\theta)^{N-n}
$$

The log-likelihood function is therefore

$$
\ln L(\theta)=n \ln \theta+(N-n) \ln (1-\theta)+C,
$$

where C represents terms not depending on θ. Setting the derivative of $\ln L$ equal to zero,

$$
\frac{\partial \ln L}{\partial \theta}=\frac{n}{\theta}-\frac{N-n}{1-\theta}=0,
$$

we find the ML estimator to be

$$
\hat{\theta}=\frac{n}{N} .
$$

2(b) We are given the expectation and variance of a binomial distributed variable as $E[n]=$ $N \theta$ and $V[n]=N \theta(1-\theta)$. Using these results we find the expectation value of $\hat{\theta}$ to be

$$
E[\hat{\theta}]=E\left[\frac{n}{N}\right]=\frac{E[n]}{N}=\frac{N \theta}{N}=\theta,
$$

and therefore the bias is $b=E[\hat{\theta}]-\theta=0$. Similarly we find the variance to be

$$
V[\hat{\theta}]=V\left[\frac{n}{N}\right]=\frac{1}{N^{2}} V[n]=\frac{N \theta(1-\theta)}{N^{2}}=\frac{\theta(1-\theta)}{N} .
$$

2(c) Suppose we observe $n=0$ for $N=10$ trials. The upper limit on θ at a confidence level of $\mathrm{CL}=1-\alpha$ is the value of θ for which there is a probability α to find as few events as we found or fewer, i.e.,

$$
\alpha=P(n \leq 0 ; N, \theta)=\frac{N!}{0!(N-0)!} \theta^{0}(1-\theta)^{N-0} .
$$

Solving for θ gives the 95% CL upper limit

$$
\theta_{\mathrm{up}}=1-\alpha^{1 / N}=1-0.05^{1 / 10}=0.26 .
$$

$\mathbf{3 (a)}$ We are given the two pdfs

$$
\begin{aligned}
f(x \mid \mathrm{s}) & =3(x-1)^{2}, \\
f(x \mid \mathrm{b}) & =3 x^{2},
\end{aligned}
$$

with $0 \leq x \leq 1$, and we want to select events of type s by requiring $x<x_{\mathrm{cut}}$, with $x_{\mathrm{cut}}=0.1$. The probabilities to select events of type s and b are

$$
\begin{aligned}
P\left(x<x_{\mathrm{cut}} \mid \mathrm{s}\right) & =\int_{0}^{x_{\mathrm{cut}}} f(x \mid \mathrm{s}) d x=\left.(x-1)^{3}\right|_{0} ^{x_{\mathrm{cut}}}=\left(x_{\mathrm{cut}}-1\right)^{3}+1 \\
& =(0.1-1)^{3}+1=0.271 \\
P\left(x<x_{\mathrm{cut}} \mid \mathrm{b}\right) & =\int_{0}^{x_{\mathrm{cut}}} f(x \mid \mathrm{b}) d x=\left.x^{3}\right|_{0} ^{x_{\mathrm{cut}}}=x_{\mathrm{cut}}^{3} \\
& =(0.1)^{3}=0.001
\end{aligned}
$$

$\mathbf{3 (b)}$ The signal purity is the probability for an event to be signal given that it is selected. To find this from the available ingredients we apply Bayes' theorem,

$$
P\left(\mathrm{~s} \mid x<x_{\mathrm{cut}}\right)=\frac{P\left(x<x_{\mathrm{cut}} \mid \mathrm{s}\right) \pi_{\mathrm{s}}}{P\left(x<x_{\mathrm{cut}} \mid \mathrm{s}\right) \pi_{\mathrm{s}}+P\left(x<x_{\mathrm{cut}} \mid \mathrm{b}\right) \pi_{\mathrm{b}}}=\frac{\left(1+\left(x_{\mathrm{cut}}-1\right)^{3}\right) \pi_{\mathrm{s}}}{\left(1+\left(x_{\mathrm{cut}}-1\right)^{3}\right) \pi_{\mathrm{s}}+x_{\mathrm{cut}}^{3} \pi_{\mathrm{b}}}
$$

where $\pi_{\mathrm{s}}=0.01$ and $\pi_{\mathrm{b}}=0.99$ are the given prior probabilities. Plugging in the numbers gives

$$
P\left(\mathrm{~s} \mid x<x_{\mathrm{cut}}\right)=\frac{0.271 \times 0.01}{0.271 \times 0.01+0.001 \times 0.99}=0.732
$$

$\mathbf{3}(\mathbf{c})$ For an event with an observed value of x, the probability that it is background is again given by Bayes' theorem,

$$
P(\mathrm{~b} \mid x)=\frac{f(x \mid \mathrm{b}) \pi_{\mathrm{b}}}{f(x \mid \mathrm{b}) \pi_{\mathrm{b}}+f(x \mid \mathrm{s}) \pi_{\mathrm{s}}}=\frac{x^{2} \pi_{\mathrm{b}}}{x^{2} \pi_{\mathrm{b}}+(x-1)^{2} \pi_{\mathrm{s}}}=\frac{0.05^{2} \times 0.99}{0.05^{2} \times 0.99+0.95^{2} \times 0.01}=0.215
$$

$\mathbf{3}(\mathbf{d})$ The pdf $f(x \mid \mathrm{b})=3 x^{2}$ is concentrated towards one, and $f(x \mid \mathrm{s})=3(x-1)^{2}$ towards zero. So if we observe $x=0.05$, then values of x less than this represent less compatibility with $f(x \mid \mathrm{b})$. Therefore the p-value of the background hypothesis can be obtained as

$$
p=\int_{0}^{x} f\left(x^{\prime} \mid \mathrm{b}\right) d x^{\prime}=\int_{0}^{x} 3 x^{2} d x^{\prime}=x^{3}=0.05^{3}=1.25 \times 10^{-4}
$$

This is not the same as the probability for the event to be of type b, but rather the probability, assuming b , to observe x with equal or lesser compatibility with b than what was found with the actual data. Unlike the probability $P(\mathrm{~b} \mid x)$ found in (c), the p-value is independent of the prior probability for the event to be of type b.

Ad) p-value $=P\left(n \geq n_{o b s} \mid s=0, b=3.9\right)$

$$
\begin{aligned}
& =\sum_{n=n_{\text {obs }}}^{\infty} \frac{b^{n}}{n!} e^{-b} \\
& =1-\sum_{n=0}^{n_{\text {obs }}-1} \frac{b^{n}}{n!} e^{-b} \\
& =F_{x^{2}}\left(2 b ; 2 n_{\text {obs }}\right) \quad\left[n_{\text {dot }}=2(m+1)=2 n_{\text {obs }}\right]
\end{aligned}
$$

mph him. I sum

$$
\begin{aligned}
& =1-\text { Math:: } \operatorname{Prl}(7.8,32) \\
& =3.58 \times 10^{-6}
\end{aligned}
$$

bb) $z=\Phi^{-1}(1-p)=4.5$

$$
=\text { Math: : Norm Quartile }(1-p)
$$

