Statistical Methods for Particle Physics
TAE 2017

Solutions to problems sheet 1

1(a) [4 marks| The exponentially distributed time measurements, ¢1,...,%,, and the Gaus-
sian distributed calibration measurement y are all independent, so the likelihood is simply
the product of the corresponding pdfs:
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The log-likelihood is therefore
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where C represents terms that do not depend on the parameters and therefore can be dropped.
Differentiating In L with respect to the parameters gives
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Setting the derivatives to zero and solving for 7 and A gives the ML estimators,
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1(b) [4 marks] The variances of A and 7 and their covariance are
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For the covariance we used the fact that ¢; and y are independent and thus have zero covari-
ance.

1(c) [3 marks| The standard deviations of 7 and A can be determined from the contour of
In L(7,\) = In Lyyax — 1/2, as shown in Fig. 1. The standard can be approximated by the
distance from the maximum of In L to the tangent line to the contour (in either direction).
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Figure 1: Tllustration of the method
to find o; and o5 from the contour of
In L(7,A) = In Lyyax — 1/2 (see text).

If X were to be known exactly, then the standard deviation of 7 would be less. This can be
seen from Fig. 1, for example, since the distance one need to move 7 away from the maximum
of In L to get to In Lyax — 1/2 would be less if A were to be fixed at A.

1(d) [5 marks] The second derivatives of InL

are
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Using E[t;] = 7 + X we find the expectation values of the second derivatives,
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The inverse covariance matrix of the estimators
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where here we can take, e.g., 1 = 7 and 6 = A.

is given by
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We are given the formula for the inverse of

the corresponding 2 x 2 matrix, and by substituting in the ingredients we find
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which are the same as what was found in (c).
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2(a) The likelihood function is given by the binomial distribution evaluated with the single
observed value n and regarded as a function of the unknown parameter 6:

(1 — o)V .

The log-likelihood function is therefore
InL(#) =nlnd+ (N—n)ln(l-6)+C,
where C represents terms not depending on 6. Setting the derivative of In L equal to zero,
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we find the ML estimator to be
n

2(b) We are given the expectation and variance of a binomial distributed variable as E[n] =
N@ and V[n| = NO(1 — 0). Using these results we find the expectation value of 6 to be

Bl =8 [] = 5 = =0,

and therefore the bias is b = E[f] — § = 0. Similarly we find the variance to be
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2(c) Suppose we observe n = 0 for N = 10 trials. The upper limit on 6 at a confidence level
of CL = 1 — « is the value of 6 for which there is a probability « to find as few events as we

found or fewer, i.e.,
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Solving for 0 gives the 95% CL upper limit
up =1 — /N =1-0.05/10 = 0.26 .

3(a) We are given the two pdfs
flals) = 3(x-1),
flzb) = 327,

with 0 < z < 1, and we want to select events of type s by requiring x < ey, with ey = 0.1.
The probabilities to select events of type s and b are
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3(b) The signal purity is the probability for an event to be signal given that it is selected.
To find this from the available ingredients we apply Bayes’ theorem,
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where ms = 0.01 and 7, = 0.99 are the given prior probabilities. Plugging in the numbers
gives

0.271 x 0.01
. e —0.732,
(Sl < Teu) = §377570.01 + 0,001 % 0.99

3(c) For an event with an observed value of z, the probability that it is background is again
given by Bayes’ theorem,

f(z|b)my B w2y, 0.05% x 0.99

= = =0.215.
(z|b)m, + f(z]s)ms  2?mp + (2 —1)%m  0.05% x 0.99 + 0.952 x 0.01

P(blz) = 7

3(d) The pdf f(z|b) = 322 is concentrated towards one, and f(z|s) = 3(z —1)? towards zero.
So if we observe z = 0.05, then values of = less than this represent less compatibility with
f(z|b). Therefore the p-value of the background hypothesis can be obtained as
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This is not the same as the probability for the event to be of type b, but rather the probability,
assuming b, to observe x with equal or lesser compatibility with b than what was found with
the actual data. Unlike the probability P(b|z) found in (c), the p-value is independent of the
prior probability for the event to be of type b.
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