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Solutions to problems sheet 1

1(a) [4 marks] The exponentially distributed time measurements, t1, . . . , tn, and the Gaus-
sian distributed calibration measurement y are all independent, so the likelihood is simply
the product of the corresponding pdfs:

L(τ, λ) =
n
∏

i=1

1

τ + λ
e−ti/(τ+λ) 1√

2πσ
e−(y−λ)2/2σ2

.

The log-likelihood is therefore

lnL(τ, λ) = −n ln(τ + λ)− 1

τ + λ

n
∑

i=1

ti −
(y − λ)2

2σ2
+ C ,

where C represents terms that do not depend on the parameters and therefore can be dropped.
Differentiating lnL with respect to the parameters gives

∂ lnL

∂τ
= − n

τ + λ
+

∑n
i=1 ti

(τ + λ)2

∂ lnL

∂λ
= − n

τ + λ
+

∑n
i=1 ti

(τ + λ)2
+

y − λ

σ2
.

Setting the derivatives to zero and solving for τ and λ gives the ML estimators,

τ̂ =
1

n

n
∑

i=1

ti − y

λ̂ = y .

1(b) [4 marks] The variances of λ̂ and τ̂ and their covariance are

V [λ̂] = V [y] = σ2 ,

V [τ̂ ] = V

[

1

n

n
∑

i=1

ti − y

]

=
1

n2

n
∑

i=1

V [ti] + V [y] =
(τ + λ)2

n
+ σ2

cov[τ̂ , λ̂] = cov

[

1

n

n
∑

i=1

ti − y, y

]

= −V [y] = −σ2 ,

For the covariance we used the fact that ti and y are independent and thus have zero covari-
ance.

1(c) [3 marks] The standard deviations of τ̂ and λ̂ can be determined from the contour of
lnL(τ, λ) = lnLmax − 1/2, as shown in Fig. 1. The standard can be approximated by the
distance from the maximum of lnL to the tangent line to the contour (in either direction).
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Figure 1: Illustration of the method
to find στ̂ and σ

λ̂
from the contour of

lnL(τ, λ) = lnLmax − 1/2 (see text).

If λ were to be known exactly, then the standard deviation of τ̂ would be less. This can be
seen from Fig. 1, for example, since the distance one need to move τ away from the maximum
of lnL to get to lnLmax − 1/2 would be less if λ were to be fixed at λ̂.

1(d) [5 marks] The second derivatives of lnL are

∂2 lnL

∂τ2
=

n

(τ + λ)2
− 2

∑n
i=1 ti

(τ + λ)3
,

∂2 lnL

∂λ2
=

n

(τ + λ)2
− 2

∑n
i=1 ti

(τ + λ)3
− 1

σ2
,

∂2 lnL

∂τ∂λ
=

n

(τ + λ)2
− 2

∑n
i=1 ti

(τ + λ)3
.

Using E[ti] = τ + λ we find the expectation values of the second derivatives,

E

[

∂2 lnL

∂τ2

]

=
n

(τ + λ)2
− 2n(τ + λ)

(τ + λ)3
= − n

(τ + λ)2
,

E

[

∂2 lnL

∂λ2

]

= − n

(τ + λ)2
− 1

σ2
,

E

[

∂2 lnL

∂τ∂λ

]

= − n

(τ + λ)2
.

The inverse covariance matrix of the estimators is given by

V −1
ij = −E

[

∂2 lnL

∂θi∂θj

]

where here we can take, e.g., θ1 = τ and θ2 = λ. We are given the formula for the inverse of
the corresponding 2× 2 matrix, and by substituting in the ingredients we find

V =





(τ+λ)2

n + σ2 −σ2

−σ2 σ2





which are the same as what was found in (c).
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2(a) The likelihood function is given by the binomial distribution evaluated with the single
observed value n and regarded as a function of the unknown parameter θ:

L(θ) =
N !

n!(N − n)!
θn(1− θ)N−n .

The log-likelihood function is therefore

lnL(θ) = n ln θ + (N − n) ln(1− θ) + C ,

where C represents terms not depending on θ. Setting the derivative of lnL equal to zero,

∂ lnL

∂θ
=

n

θ
− N − n

1− θ
= 0 ,

we find the ML estimator to be

θ̂ =
n

N
.

2(b) We are given the expectation and variance of a binomial distributed variable as E[n] =
Nθ and V [n] = Nθ(1− θ). Using these results we find the expectation value of θ̂ to be

E[θ̂] = E

[

n

N

]

=
E[n]

N
=

Nθ

N
= θ ,

and therefore the bias is b = E[θ̂]− θ = 0. Similarly we find the variance to be

V [θ̂] = V

[

n

N

]

=
1

N2
V [n] =

Nθ(1− θ)

N2
=

θ(1− θ)

N
.

2(c) Suppose we observe n = 0 for N = 10 trials. The upper limit on θ at a confidence level
of CL = 1− α is the value of θ for which there is a probability α to find as few events as we
found or fewer, i.e.,

α = P (n ≤ 0;N, θ) =
N !

0!(N − 0)!
θ0(1− θ)N−0 .

Solving for θ gives the 95% CL upper limit

θup = 1− α1/N = 1− 0.051/10 = 0.26 .

3(a) We are given the two pdfs

f(x|s) = 3(x− 1)2 ,

f(x|b) = 3x2 ,

with 0 ≤ x ≤ 1, and we want to select events of type s by requiring x < xcut, with xcut = 0.1.
The probabilities to select events of type s and b are

3



P (x < xcut|s) =

∫ xcut

0
f(x|s) dx = (x− 1)3

∣

∣

∣

xcut

0
= (xcut − 1)3 + 1

= (0.1− 1)3 + 1 = 0.271

P (x < xcut|b) =

∫ xcut

0
f(x|b) dx = x3

∣

∣

∣

xcut

0
= x3cut

= (0.1)3 = 0.001

3(b) The signal purity is the probability for an event to be signal given that it is selected.
To find this from the available ingredients we apply Bayes’ theorem,

P (s|x < xcut) =
P (x < xcut|s)πs

P (x < xcut|s)πs + P (x < xcut|b)πb
=

(1 + (xcut − 1)3)πs
(1 + (xcut − 1)3)πs + x3cutπb

,

where πs = 0.01 and πb = 0.99 are the given prior probabilities. Plugging in the numbers
gives

P (s|x < xcut) =
0.271× 0.01

0.271× 0.01 + 0.001× 0.99
= 0.732 ,

3(c) For an event with an observed value of x, the probability that it is background is again
given by Bayes’ theorem,

P (b|x) = f(x|b)πb
f(x|b)πb + f(x|s)πs

=
x2πb

x2πb + (x− 1)2πs
=

0.052 × 0.99

0.052 × 0.99 + 0.952 × 0.01
= 0.215 .

3(d) The pdf f(x|b) = 3x2 is concentrated towards one, and f(x|s) = 3(x−1)2 towards zero.
So if we observe x = 0.05, then values of x less than this represent less compatibility with
f(x|b). Therefore the p-value of the background hypothesis can be obtained as

p =

∫ x

0
f(x′|b) dx′ =

∫ x

0
3x′

2
dx′ = x3 = 0.053 = 1.25× 10−4 .

This is not the same as the probability for the event to be of type b, but rather the probability,
assuming b, to observe x with equal or lesser compatibility with b than what was found with
the actual data. Unlike the probability P (b|x) found in (c), the p-value is independent of the
prior probability for the event to be of type b.
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