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Statistical Data Analysis:  Outline by Lecture

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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Some statistics books, papers, etc. 
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998

see also www.pp.rhul.ac.uk/~cowan/sda

R.J. Barlow, Statistics, A Guide to the Use of Statistical
in the Physical Sciences, Wiley, 1989

see also hepwww.ph.man.ac.uk/~roger/book.html

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986

F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006

S. Brandt, Statistical and Computational Methods in Data Analysis, 
Springer, New York, 1998 (with program library on CD)

W.M. Yao et al. (Particle Data Group), Review of Particle Physics, 
Journal of Physics G 33 (2006) 1; see also pdg.lbl.gov sections on 
probability statistics, Monte Carlo



G. Cowan Lectures on Statistical Data Analysis Lecture 1  page 4

Data analysis in particle physics 

Observe events of a certain type

Measure characteristics of each event (particle momenta,
number of muons, energy of jets,...)

Theories (e.g. SM) predict distributions of these properties
up to free parameters, e.g., , GF, MZ, s, mH, ...

Some tasks of data analysis:

Estimate (measure) the parameters;

Quantify the uncertainty of the parameter estimates;

Test the extent to which the predictions of a theory
are in agreement with the data.
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Dealing with uncertainty 

In particle physics there are various elements of uncertainty:

theory is not deterministic

quantum mechanics

random measurement errors

present even without quantum effects

things we could know in principle but don’t

e.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY
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A definition of probability 

Consider a set S with subsets A, B, ...

Kolmogorov
axioms (1933)

From these axioms we can derive further properties, e.g.
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Conditional probability, independence

Also define conditional probability of A given B (with P(B) ≠ 0):

E.g. rolling dice:

Subsets A, B independent if:

If A, B independent,

N.B. do not confuse with disjoint subsets, i.e.,
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Interpretation of probability
I.  Relative frequency

A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II.  Subjective probability
A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.
•   In particle physics  frequency interpretation often most useful,
but subjective probability can provide more natural treatment of 
non-repeatable phenomena:  
     systematic uncertainties, probability that Higgs boson exists,...
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Bayes’ theorem
From the definition of conditional probability we have,

and

but , so

Bayes’ theorem

First published (posthumously) by the
Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53
(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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The law of total probability

Consider a subset B of 
the sample space S,

B ∩ Ai

Ai

B

S

divided into disjoint subsets Ai

such that ∪i Ai = S,

→

→

→ law of total probability

Bayes’ theorem becomes
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An example using Bayes’ theorem

Suppose the probability (for anyone) to have AIDS is:

← prior probabilities, i.e.,
     before any test carried out

Consider an AIDS test:  result is  or 

← probabilities to (in)correctly
     identify an infected person

← probabilities to (in)correctly
     identify an uninfected person

Suppose your result is .  How worried should you be?
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Bayes’ theorem example (cont.)

The probability to have AIDS given a + result is

i.e. you’re probably OK!

Your viewpoint:  my degree of belief that I have AIDS is 3.2%

Your doctor’s viewpoint:  3.2% of people like this will have AIDS

← posterior probability
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand:     ).

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 
P (0.117 < s < 0.121), 

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were  (H), then it says how these probabilities
should change in the light of the data.

No general prescription for priors (subjective!)
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Wrapping up lecture 1

Up to now we’ve talked some abstract properties of probability:

definition and interpretation,
Bayes’ theorem, ...

Next we will look at random variables (numerical labels for
the outcome of an experiment) and we will describe them using
 probability density functions.


