Statistical Data Analysis: Lecture 10

- 1 Probability, Bayes' theorem
- 2 Random variables and probability densities
- 3 Expectation values, error propagation
- 4 Catalogue of pdfs
- 5 The Monte Carlo method
- 6 Statistical tests: general concepts
- 7 Test statistics, multivariate methods
- 8 Goodness-of-fit tests
- 9 Parameter estimation, maximum likelihood
- 10 More maximum likelihood
 - 11 Method of least squares
 - 12 Interval estimation, setting limits
 - 13 Nuisance parameters, systematic uncertainties
 - 14 Examples of Bayesian approach

Information inequality for *n* parameters Suppose we have estimated *n* parameters $\vec{\theta} = (\theta_1, \dots, \theta_n)$. The (inverse) minimum variance bound is given by the Fisher information matrix:

$$I_{ij} = E\left[-\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\right] = -n \int f(x; \vec{\theta}) \frac{\partial^2 \ln f(x; \vec{\theta})}{\partial \theta_i \partial \theta_j} dx$$

The information inequality then states that $V - I^{-1}$ is a positive semi-definite matrix, where $V_{ij} = \text{cov}[\hat{\theta}_i, \hat{\theta}_j]$. Therefore

$$V[\hat{\theta}_i] \ge (I^{-1})_{ii}$$

Often use I^{-1} as an approximation for covariance matrix, estimate using e.g. matrix of 2nd derivatives at maximum of L.

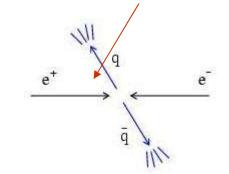
G. Cowan

Lectures on Statistical Data Analysis

Example of ML with 2 parameters

Consider a scattering angle distribution with $x = \cos \theta$,

$$f(x;\alpha,\beta) = \frac{1+\alpha x + \beta x^2}{2+2\beta/3}$$



or if $x_{\min} < x < x_{\max}$, need always to normalize so that

$$\int_{x_{\min}}^{x_{\max}} f(x; \alpha, \beta) \, dx = 1 \; .$$

Example: $\alpha = 0.5$, $\beta = 0.5$, $x_{\min} = -0.95$, $x_{\max} = 0.95$, generate n = 2000 events with Monte Carlo.

G. Cowan

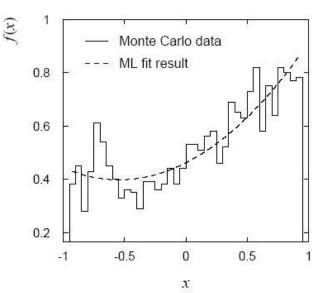
Lectures on Statistical Data Analysis

Example of ML with 2 parameters: fit result Finding maximum of $\ln L(\alpha, \beta)$ numerically (MINUIT) gives

$$\hat{\alpha} = 0.508$$

$$\hat{\beta} = 0.47$$

N.B. No binning of data for fit, but can compare to histogram for goodness-of-fit (e.g. 'visual' or χ^2).



(Co)variances from
$$(\widehat{V^{-1}})_{ij} = -\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\Big|_{\vec{\theta} = \hat{\vec{\theta}}}$$

(MINUIT routine HESSE)

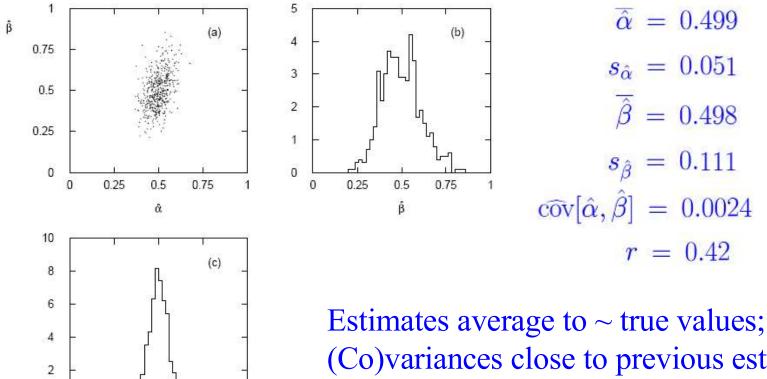
$$\hat{\sigma}_{\hat{\alpha}} = 0.052 \quad \operatorname{cov}[\hat{\alpha}, \hat{\beta}] = 0.0026$$

 $\hat{\sigma}_{\hat{\beta}} = 0.11 \quad r = 0.46$

G. Cowan

Lectures on Statistical Data Analysis

Two-parameter fit: MC study Repeat ML fit with 500 experiments, all with n = 2000 events:



(Co)variances close to previous estimates; marginal pdfs approximately Gaussian.

0

0

0.25

0.5

â

0.75

The
$$\ln L_{\rm max} - 1/2$$
 contour

For large *n*, ln *L* takes on quadratic form near maximum:

$$\ln L(\alpha,\beta) \approx \ln L_{\max}$$
$$-\frac{1}{2(1-\rho^2)} \left[\left(\frac{\alpha - \hat{\alpha}}{\sigma_{\hat{\alpha}}} \right)^2 + \left(\frac{\beta - \hat{\beta}}{\sigma_{\hat{\beta}}} \right)^2 - 2\rho \left(\frac{\alpha - \hat{\alpha}}{\sigma_{\hat{\alpha}}} \right) \left(\frac{\beta - \hat{\beta}}{\sigma_{\hat{\beta}}} \right) \right]$$

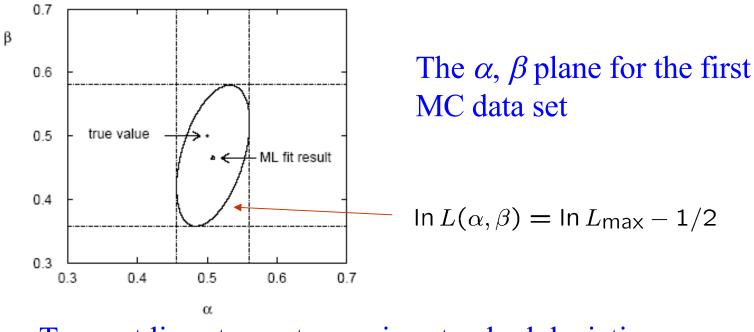
The contour $\ln L(\alpha, \beta) = \ln L_{\max} - 1/2$ is an ellipse:

$$\frac{1}{(1-\rho^2)}\left[\left(\frac{\alpha-\widehat{\alpha}}{\sigma_{\widehat{\alpha}}}\right)^2 + \left(\frac{\beta-\widehat{\beta}}{\sigma_{\widehat{\beta}}}\right)^2 - 2\rho\left(\frac{\alpha-\widehat{\alpha}}{\sigma_{\widehat{\alpha}}}\right)\left(\frac{\beta-\widehat{\beta}}{\sigma_{\widehat{\beta}}}\right)\right] = 1$$

G. Cowan

Lectures on Statistical Data Analysis

(Co)variances from $\ln L$ contour



 \rightarrow Tangent lines to contours give standard deviations.

 \rightarrow Angle of ellipse ϕ related to correlation: tan $2\phi =$

$$=\frac{2\rho\sigma_{\widehat{\alpha}}\sigma_{\widehat{\beta}}}{\sigma_{\widehat{\alpha}}^2-\sigma\widehat{\beta}^2}$$

Correlations between estimators result in an increase in their standard deviations (statistical errors).

Extended ML

Sometimes regard *n* not as fixed, but as a Poisson r.v., mean *v*. Result of experiment defined as: $n, x_1, ..., x_n$.

The (extended) likelihood function is:

$$L(\nu,\vec{\theta}) = \frac{\nu^n}{n!} e^{-\nu} \prod_{i=1}^n f(x_i;\vec{\theta})$$

Suppose theory gives $v = v(\theta)$, then the log-likelihood is

$$\ln L(\vec{\theta}) = -\nu(\vec{\theta}) + \sum_{i=1}^{n} \ln(\nu(\vec{\theta})f(x_i;\vec{\theta})) + C$$

where C represents terms not depending on $\boldsymbol{\theta}$.

G. Cowan

Extended ML (2)

Example: expected number of events $\nu(\vec{\theta}) = \sigma(\vec{\theta}) \int L dt$ where the total cross section $\sigma(\theta)$ is predicted as a function of the parameters of a theory, as is the distribution of a variable *x*.

Extended ML uses more info \rightarrow smaller errors for $\vec{\theta}$

Important e.g. for anomalous couplings in $e^+e^- \rightarrow W^+W^-$

If v does not depend on θ but remains a free parameter, extended ML gives:

$$\hat{\nu} = n$$

 $\hat{\theta} = \text{same as ML}$

Extended ML example

Consider two types of events (e.g., signal and background) each of which predict a given pdf for the variable *x*: $f_s(x)$ and $f_b(x)$.

We observe a mixture of the two event types, signal fraction = θ , expected total number = v, observed total number = n.

Let $\mu_{s} = \theta \nu$, $\mu_{b} = (1 - \theta) \nu$, goal is to estimate μ_{s} , μ_{b} .

$$f(x; \mu_{\rm S}, \mu_{\rm b}) = \frac{\mu_{\rm S}}{\mu_{\rm S} + \mu_{\rm b}} f_{\rm S}(x) + \frac{\mu_{\rm b}}{\mu_{\rm S} + \mu_{\rm b}} f_{\rm b}(x)$$

$$P(n; \mu_{\rm S}, \mu_{\rm b}) = \frac{(\mu_{\rm S} + \mu_{\rm b})^n}{n!} e^{-(\mu_{\rm S} + \mu_{\rm b})}$$

$$\rightarrow \ln L(\mu_{\rm S},\mu_{\rm b}) = -(\mu_{\rm S}+\mu_{\rm b}) + \sum_{i=1}^{n} \ln \left[(\mu_{\rm S}+\mu_{\rm b}) f(x_i;\mu_{\rm S},\mu_{\rm b}) \right]$$

G. Cowan

Lectures on Statistical Data Analysis

Extended ML example (2)

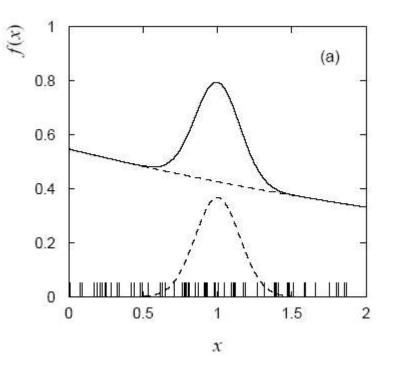
Monte Carlo example with combination of exponential and Gaussian:

$$\mu_{\rm S} = 6$$
$$\mu_{\rm b} = 60$$

Maximize log-likelihood in terms of μ_s and μ_b :

$$\hat{\mu}_{s} = 8.7 \pm 5.5$$

 $\hat{\mu}_{\rm b}$ = 54.3 ± 8.8



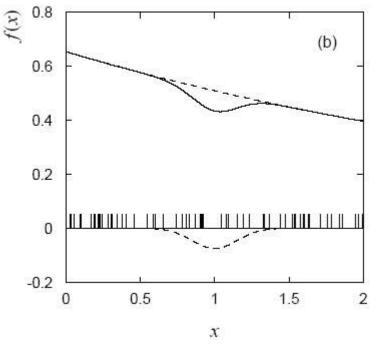
Here errors reflect total Poisson fluctuation as well as that in proportion of signal/background.

Extended ML example: an unphysical estimate

A downwards fluctuation of data in the peak region can lead to even fewer events than what would be obtained from background alone.

Estimate for μ_s here pushed negative (unphysical).

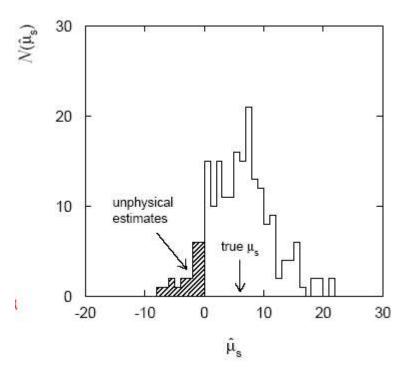
We can let this happen as long as the (total) pdf stays positive everywhere.



Unphysical estimators (2)

Here the unphysical estimator is unbiased and should nevertheless be reported, since average of a large number of unbiased estimates converges to the true value (cf. PDG).

Repeat entire MC experiment many times, allow unphysical estimates:



ML with binned data

Often put data into a histogram: $\vec{n} = (n_1, \dots, n_N), n_{tot} = \sum_{i=1}^N n_i$

Hypothesis is
$$\vec{\nu} = (\nu_1, \dots, \nu_N), \ \nu_{tot} = \sum_{i=1}^N \nu_i$$
 where

$$\nu_i(\vec{\theta}) = \nu_{\text{tot}} \int_{\text{bin } i} f(x; \vec{\theta}) \, dx$$

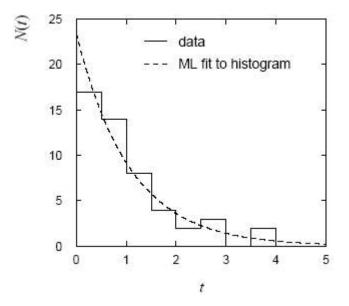
If we model the data as multinomial (n_{tot} constant),

$$f(\vec{n};\vec{\nu}) = \frac{n_{\text{tot}}!}{n_1! \dots n_N!} \left(\frac{\nu_1}{n_{\text{tot}}}\right)^{n_1} \cdots \left(\frac{\nu_N}{n_{\text{tot}}}\right)^{n_N}$$

then the log-likelihood function is: $\ln L(\vec{\theta}) = \sum_{i=1}^{N} n_i \ln \nu_i(\vec{\theta}) + C$

ML example with binned data

Previous example with exponential, now put data into histogram:



 $\hat{\tau} = 1.07 \pm 0.17$ (1.06 \pm 0.15 for unbinned ML with same sample)

Limit of zero bin width \rightarrow usual unbinned ML.

If n_i treated as Poisson, we get extended log-likelihood:

$$\ln L(\nu_{\text{tot}}, \vec{\theta}) = -\nu_{\text{tot}} + \sum_{i=1}^{N} n_i \ln \nu_i(\nu_{\text{tot}}, \vec{\theta}) + C$$

Relationship between ML and Bayesian estimators

In Bayesian statistics, both θ and x are random variables:

 $L(\theta) = L(\vec{x}|\theta) = f_{\text{joint}}(\vec{x}|\theta)$

Recall the Bayesian method:

Use subjective probability for hypotheses (θ); before experiment, knowledge summarized by prior pdf $\pi(\theta)$; use Bayes' theorem to update prior in light of data:

$$p(\theta|\vec{x}) = \frac{L(\vec{x}|\theta)\pi(\theta)}{\int L(\vec{x}|\theta')\pi(\theta') d\theta'}$$

Posterior pdf (conditional pdf for θ given x)

G. Cowan

Lectures on Statistical Data Analysis

ML and Bayesian estimators (2) Purist Bayesian: $p(\theta \mid x)$ contains all knowledge about θ . Pragmatist Bayesian: $p(\theta | x)$ could be a complicated function, \rightarrow summarize using an estimator $\hat{\theta}_{\text{Bayes}}$ Take mode of $p(\theta | x)$, (could also use e.g. expectation value) What do we use for $\pi(\theta)$? No golden rule (subjective!), often represent 'prior ignorance' by $\pi(\theta) = \text{constant}$, in which case $\hat{\theta}_{\text{Baves}} = \hat{\theta}_{\text{MI}}$

But... we could have used a different parameter, e.g., $\lambda = 1/\theta$, and if prior $\pi_{\theta}(\theta)$ is constant, then $\pi_{\lambda}(\lambda)$ is not!

'Complete prior ignorance' is not well defined.

G. Cowan

Wrapping up lecture 10

We've now seen several examples of the method of Maximum Likelihood:

multiparameter case variable sample size (extended ML) histogram-based data

and we've seen the connection between ML and Bayesian parameter estimation.

Next we will consider a special case of ML with Gaussian data and show how this leads to the method of Least Squares.