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Statistical Data Analysis:  Lecture 10

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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Information inequality for n parameters
Suppose we have estimated n parameters   

The (inverse) minimum variance bound is given by the 
Fisher information matrix:

The information inequality then states that V  I is a positive
semi-definite matrix, where                                  Therefore

Often use I as an approximation for covariance matrix, 
estimate using e.g. matrix of 2nd derivatives at maximum of L.
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Example of ML with 2 parameters

Consider a scattering angle distribution with x = cos ,

or if xmin < x < xmax, need always to normalize so that 

Example:   = 0.5,  = 0.5, xmin = 0.95, xmax = 0.95, 
generate n = 2000 events with Monte Carlo.
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Example of ML with 2 parameters:  fit result
Finding maximum of ln L(, ) numerically (MINUIT) gives

N.B.  No binning of data for fit,
but can compare to histogram for
goodness-of-fit (e.g. ‘visual’ or 2). 

(Co)variances from (MINUIT routine 
HESSE)
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Two-parameter fit:  MC study
Repeat ML fit with 500 experiments, all with n = 2000 events:

Estimates average to ~ true values;
(Co)variances close to previous estimates;
marginal pdfs approximately Gaussian.
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The ln Lmax  1/2 contour

For large n, ln L takes on quadratic form near maximum:

The contour is an ellipse:
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(Co)variances from ln L contour

→ Tangent lines to contours give standard deviations.

→ Angle of ellipse  related to correlation:

Correlations between estimators result in an increase
in their standard deviations (statistical errors).

The ,  plane for the first
MC data set
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Extended ML
Sometimes regard n not as fixed, but as a Poisson r.v., mean .

Result of experiment defined as: n, x1, ..., xn.

The (extended) likelihood function is:

Suppose theory gives  = (), then the log-likelihood is 

where C represents terms not depending on .
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Extended ML (2)

Extended ML uses more info → smaller errors for 

Example:  expected number of events 

where the total cross section () is predicted as a function of

the parameters of a theory, as is the distribution of a variable x. 

If  does not depend on  but remains a free parameter,
extended ML gives: 

Important e.g. for anomalous couplings in ee → W+W
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Extended ML example
Consider two types of events (e.g., signal and background) each 
of which predict a given pdf for the variable x:  fs(x) and fb(x).

We observe a mixture of the two event types, signal fraction = , 
expected total number = , observed total number = n.

Let goal is to estimate s, b.

→
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Extended ML example (2)

Maximize log-likelihood in 
terms of s and b:

Monte Carlo example
with combination of
exponential and Gaussian:

Here errors reflect total Poisson
fluctuation as well as that in 
proportion of signal/background.
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Extended ML example:  an unphysical estimate

A downwards fluctuation of data in the peak region can lead
to even fewer events than what would be obtained from
background alone.

Estimate for s here pushed
negative (unphysical).

We can let this happen as 
long as the (total) pdf stays
positive everywhere.
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Unphysical estimators (2) 

Here the unphysical estimator is unbiased and should 
nevertheless be reported, since average of a large number of 
unbiased estimates converges to the true value (cf. PDG).

Repeat entire MC
experiment many times, 
allow unphysical estimates: 
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ML with binned data
Often put data into a histogram:

Hypothesis is where

If we model the data as multinomial (ntot constant),  

then the log-likelihood function is:
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ML example with binned data
Previous example with exponential, now put data into histogram:

Limit of zero bin width → usual unbinned ML.

If ni treated as Poisson, we get extended log-likelihood:
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Relationship between ML and Bayesian estimators

In Bayesian statistics, both  and x are random variables:

Recall the Bayesian method:

Use subjective probability for hypotheses ();

before experiment, knowledge summarized by prior pdf ();

use Bayes’ theorem to update prior in light of data:

Posterior pdf (conditional pdf for  given x)
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ML and Bayesian estimators (2)
Purist Bayesian:  p(| x) contains all knowledge about .

Pragmatist Bayesian:  p(| x) could be a complicated function,

→ summarize using an estimator 

Take mode of p(| x) ,  (could also use e.g. expectation value)

What do we use for ()?  No golden rule (subjective!), often
represent ‘prior ignorance’ by () = constant, in which case

But... we could have used a different parameter, e.g.,  = 1/,
and if prior () is constant, then () is not!  

‘Complete prior ignorance’ is not well defined.
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Wrapping up lecture 10

We’ve now seen several examples of the method of Maximum
Likelihood:

multiparameter case
variable sample size (extended ML)
histogram-based data

and we’ve seen the connection between ML and Bayesian
parameter estimation.

Next we will consider a special case of ML with Gaussian
data and show how this leads to the method of Least Squares.


