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Pre-lecture 11 comments on problem sheet 7
Problem sheet 7 involves modifying some C++ programs
to create a Fisher discriminant and neural network to separate
two types of events (signal and background):

Each event is characterized
by 3 numbers: x, y and z.

Each "event" (instance of x,y,z)
corresponds to a "row" in an
n-tuple.  (here, a 3-tuple).

In ROOT, n-tuples are stored
in objects of the TTree class.
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Comments on problem sheet 7
Problem sheet 7 also involves an ML fit using the root class
TMinuit, which numerically minimizes the (negative) 
log-likelihood function.

An MC program is used to
generate data from exponential,
then the parameter is fitted using
TMinuit  (see code).

You then modify the code to do the problem of a 
mixture of exponentials:
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Statistical Data Analysis:  Lecture 11

1 Probability, Bayes’ theorem
2 Random variables and probability densities
3 Expectation values, error propagation
4 Catalogue of pdfs
5 The Monte Carlo method
6 Statistical tests:  general concepts
7 Test statistics, multivariate methods
8 Goodness-of-fit tests
9 Parameter estimation, maximum likelihood
10 More maximum likelihood
11 Method of least squares
12 Interval estimation, setting limits
13 Nuisance parameters, systematic uncertainties
14 Examples of Bayesian approach
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The method of least squares
Suppose we measure N values, y1, ..., yN, 
assumed to be  independent Gaussian 
r.v.s with 

Assume known values of the control
variable x1, ..., xN and known variances

The likelihood function is

We want to estimate , i.e., fit the curve to the data points.
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The method of least squares (2)

The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

Minimum defines the least squares (LS) estimator 

Very often measurement errors are ~Gaussian and so ML
and LS are essentially the same.

Often minimize 2 numerically (e.g. program MINUIT).
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LS with correlated measurements

If the yi follow a multivariate Gaussian, covariance matrix V,

Then maximizing the likelihood is equivalent to minimizing
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Example of least squares fit

Fit a polynomial of order p:
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Variance of LS estimators
In most cases of interest we obtain the variance in a manner
similar to ML.  E.g. for data ~ Gaussian we have

and so

or for the graphical method we 
take the values of  where

1.0
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Two-parameter LS fit
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Goodness-of-fit with least squares
The value of the 2 at its minimum is a measure of the level
of agreement between the data and fitted curve:

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form (x; ).

We can show that if the hypothesis is correct, then the statistic 
t = 2

min follows the chi-square pdf,

where the number of degrees of freedom is 

       nd  = number of data points ­ number of fitted parameters
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Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number 
of degrees of freedom, so if 2

min ≈  nd the fit is ‘good’.

More generally, find the p-value:

E.g. for the previous example with 1st order polynomial (line),

whereas for the 0th order polynomial (horizontal line),

This is the probability of obtaining a 2
min as high as the one

we got, or higher, if the hypothesis is correct.
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Goodness-of-fit vs. statistical errors
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Goodness-of-fit vs. stat. errors (2)
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LS with binned data
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LS with binned data (2)
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LS with binned data — normalization
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LS normalization example
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Using LS to combine measurements
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Combining correlated measurements with LS
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Example: averaging two correlated measurements
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Negative weights in LS average
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Wrapping up lecture 11

Considering ML with Gaussian data led to the method of
Least Squares.

Several caveats when the data are not (quite) Gaussian, e.g.,
histogram-based data.

Goodness-of-fit with LS “easy” (but do not confuse good fit
with small stat. errors)

LS can be used for averaging measurements.

Next lecture:  Interval estimation


